Probing the See Saw Mechanism at Future Hadron Colliders

M.J.	Ramsey-Musolf
------	---------------

U Mass Amherst

http://www.physics.umass.edu/acfi/

My pronouns: he/him/his

1812.01630: J.C. Helo, H. Li, N. Neill, MJRM, J.C. Vasquez 1810.09450: Y. Du, A. Dunbrack, MJRM, J.-H. Yu 1806.08499: B. Dev, MJRM, Y. Zhang

IAS Future Collider Workshop January 2019

Goals For This Talk

- Illustrate how studies of the tri-lepton channel at the HL/HE-LHC & a 100 TeV pp collider may help distinguish between mLRSM and non-minimal LRSM/minimal types I or II see saw mechanisms
- Illustrate reach of a 100 TeV collider for discovery and characterization of type II see saw scalar sector
- Encourage future work

Outline

- I. Context
- II. Type I+II See Saw & LRSM
- III. Tri-lepton Channel at pp Colliders
- IV. Probing the Scalar Potential
- V. Outlook

I. Context

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Dirac
$$Majorana$$

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Dirac
$$Majorana$$

What is the
mass scale Λ
associated with
 m_{ν} generation ?

$$\mathcal{L}_{mass} = y \bar{L} \tilde{H} \nu_R + h.c.$$

$$\mathcal{L}_{mass} = \frac{y}{\Lambda} \bar{L}^c H H^T L + h.c.$$

$$Majorana$$
What is the mass scale A associated with m_v generation ?
$$M_W \underbrace{Weuting}_{Weuting} \underbrace{SUSY, GUTs, BSM}_{Higgs sector...}$$

Coupling

$$\mathcal{L}_{mass} = y \bar{L} \tilde{H} \nu_R + h.c.$$

$$Dirac$$

$$\mathcal{L}_{mass} = \frac{y}{\Lambda} \bar{L}^c H H^T L + h.c.$$

$$Majorana$$

$$What is the mass scale \Lambda associated with m_v generation ?$$

$$What are the corresponding dynamics ?$$

$$\mathcal{L}_{mass} = \frac{y}{\Lambda} \bar{L}^c H H^T L + h.c.$$

$$Majorana$$

$$M_W usual integration = \frac{y}{\Lambda} \bar{L}^c H H^T L + h.c.$$

$$Majorana$$

Coupling

Neutrino Mass Models

• Type I see-saw	"vSM", "vMSSM",
• Type II see-saw	LASM
• Type III see-saw	GUTs
Inverse see-saw	LRSM
Radiative	MSSM

+ combinations & many other examples

Type I See-Saw

Type I: $N_R SU(2)_L$ singletType III: $N_R SU(2)_L$ triplet

Type I See-Saw

Type I: $N_R SU(2)_L$ singletType III: $N_R SU(2)_L$ triplet

Type II See-Saw

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Dirac
$$Majorana$$

Introduce "Complex Triplet": $\Delta_L \sim (1, 3, 2)$

$$\Delta_L = \begin{pmatrix} \Delta^+ \sqrt{2} & \Delta^{++} \\ \Delta^0 & -\Delta^+ \sqrt{2} \end{pmatrix}$$

$$\mathcal{L} = \frac{g}{2} h_{ij} \left[\bar{L}^{C_i} \varepsilon \Delta_L L^j \right] + \text{h.c.}$$

$$\frac{y}{\Lambda} \sim gh \left(\frac{\mu}{m_{\Delta}}\right) \frac{1}{m_{\Delta}}$$

See Saw Scenarios

Model Class	Minimal	LRSM	ΔV
Туре І	~	~	*
Type II	~	~	~
Type III	~	*	*
Inverse	~	~	*

See Saw Scenarios

Model Class	Minimal	LRSM	ΔV
Туре І	~		*
Type II	~	~	~
Type III	~	*	*
Inverse	~	•	*

This Talk: How can we probe with LHC & future pp colliders

Comments

- Many other earlier works on see saw collider pheno (e.g. Keung & Senjanovic '83, Perez et al '08, Nemevsek et al '12, Han et al '13, Izaguirre & Shuve '15,...) Apologies to others not cited here !
- Following assumes see saw scale at the 10's of TeV or below

II. Types I + II See Saw & LRSM

See Saw Scenarios

Model Class	Minimal	LRSM	ΔV
Туре І	~		*
Type II	~	~	~
Type III	~	*	*
Inverse	~		*

How to distinguish minimal LRSM from nonminimal LRSM or other minimal scenarios

Minimal Left-Right Symmetric Model

Two sources of m_{v} *:*

$$\mathcal{L} = \frac{g}{2} h_{ij} \left[\bar{L}^{C_i} \varepsilon \Delta_L L^j \right] + (L \leftrightarrow R) + \text{h.c.} + Yukawa$$

$$\mathcal{L}_{\text{mass}} = \left(\begin{array}{cc} \bar{\nu}_L & \bar{N}_R^C \end{array} \right) \left(\begin{array}{cc} 0 & m_D \\ m_D & M_N \end{array} \right) \left(\begin{array}{cc} \nu_L \\ N_R \end{array} \right) + m_L \bar{\nu}_L^C \nu_L$$

Minimal Left-Right Symmetric Model

Two sources of m_{v} :

$$\mathcal{L} = \frac{g}{2} h_{ij} \left[\bar{L}^{C_i} \varepsilon \Delta_L L^j \right] + (L \leftrightarrow R) + \text{h.c.} + Yukawa$$

Non-Minimal Left-Right Symmetric Model

LRSM inverse see saw:

Add gauge singlet neutral leptons w/ Majorana mass μ

$$\mathcal{M} = \left(\begin{array}{ccc} 0 & M_D^T & 0\\ M_D & 0 & M_N\\ 0 & M_N^T & \mu \end{array}\right)$$

$$M_{\nu} \simeq M_D^T \frac{1}{M_N^T} \mu \frac{1}{M_N} M_D$$

Mass matrix diagonalization

$$\left(\begin{array}{c}\nu'\\N'^c\end{array}\right) = \left(\begin{array}{cc}1&\Theta\\-\Theta^T&1\end{array}\right) \left(\begin{array}{c}\nu\\N^c\end{array}\right)$$

$$\Theta \simeq M_D^* M_N^{-1}$$

Mass matrix diagonalization

$$\left(\begin{array}{c}\nu'\\N'^c\end{array}\right) = \left(\begin{array}{cc}1&\Theta\\-\Theta^T&1\end{array}\right) \left(\begin{array}{c}\nu\\N^c\end{array}\right)$$

$$\Theta \simeq M_D^* M_N^{-1}$$

Colliders:

Probe Θ for M_N at or below O(few) TeV

Models:

- Minimal LRSM: predict Θ
- Minimal type I or nonminimal LRSM: Θ arbitrary

Minimal Model

$$M_D = V_L^* \hat{M}_N \sqrt{\frac{v_L}{v_R} - \frac{\hat{M}_\nu}{\hat{M}_N}} V_L^{\dagger}$$

Non-Minimal Model

$$V_R^{\dagger} M_D = \hat{M}_N U_R^{\dagger} \frac{1}{\sqrt{\hat{\mu}}} \mathcal{R} \sqrt{m_\nu} V_L^{\dagger}$$

Minimal Model

$$M_D = V_L^* \hat{M}_N \sqrt{\frac{v_L}{v_R} - \frac{\hat{M}_\nu}{\hat{M}_N}} V_L^\dagger$$
 Low-energy ν pheno Collider studies

Non-Minimal Model

Collider studies Low-energy v pheno
$$V_R^{\dagger} M_D = \hat{M}_N U_R^{\dagger} \frac{1}{\sqrt{\hat{\mu}}} \mathcal{R} \sqrt{m_\nu} V_L^{\dagger}$$
24

Minimal Model

$$M_D = V_L^* \hat{M}_N \sqrt{\frac{v_L}{v_R} - \frac{\hat{M}_\nu}{\hat{M}_N}} V_L^\dagger$$
 Low-energy ν pheno Collider studies

Non-Minimal Model

Arbitrary (Casas-Ibarra)
Collider studies

$$V_R^{\dagger} M_D = \hat{M}_N U_R^{\dagger} \frac{1}{\sqrt{\hat{\mu}}} \mathcal{R} \sqrt{m_\nu} V_L^{\dagger}$$
25

III. Tri-Lepton Channel at pp Colliders

1812.01630: J.C. Helo, H. Li, N. Neill, MJRM, J.C. Vasquez

Tri-Lepton Channel

- Relatively clean
- Previous work min type I
- Study prompt decay region
- Analysis: back up slides

Tri-Lepton Channel

- Relatively clean
- Previous work min type I
- Study prompt decay region
- Analysis: back up slides

Dominant:
$$N_1 \rightarrow W_R^* I \rightarrow jj I$$

$$\Gamma\left(N \to l^{\pm} l'^{\mp} \nu\right) = \left(|(\Theta_L)_{lN}|^2 + |(\Theta_L)_{l'N}|^2 \right)$$

$$\mathbf{X} \quad \frac{G_F^2}{96\pi^4 m_N} \int_0^{m_N^2} dx \frac{\pi (m_N^2 - x)(m_N^4 + xm_N^2 - 2x^2)}{m_N^2 (1 - \frac{x}{M_W^2})^2}$$

 $mLRSM N_1 BR$

Sensitivities

Sensitivities

Sensitivities

•

- Observation of the tri-lepton channel at the HL/HE-LHC → non-minimal model or minimal type I
 - Observing the tri-lepton channel in the mLRSM → 100 TeV pp collider needed

Interpreting a Signal

100 TeV pp

Probing O(MeV) Dirac masses

IV. Probing the Scalar Potential

1810.09450: Y. Du, A. Dunbrack, MJRM, J.-H. Yu

- If tri-lepton signal seen at HL/HE-LHC how distinguish between minimal type I, minimal type II, or non-minimal LRSM ?
- If tri-lepton signal first seen at 100 TeV pp collider, how confirm it is in context of LR symmetry

See Saw Scenarios

Model Class	Minimal	LRSM	ΔV
Туре І	~	~	*
Type II	~	~	~
Type III	~	*	*
Inverse	~	~	*

- Follow on to Perez et al '08
- No assumption of LR symmetry

Minimal Type II Potential

$$V(\Phi, \Delta) = -m^2 \Phi^{\dagger} \Phi + M^2 \text{Tr}(\Delta^{\dagger} \Delta) + \left[\mu \Phi^{\text{T}} i \tau_2 \Delta^{\dagger} \Phi + \text{h.c.} \right] + \lambda_1 (\Phi^{\dagger} \Phi)^2 + \lambda_2 \left[\text{Tr}(\Delta^{\dagger} \Delta) \right]^2 + \lambda_3 \text{Tr}[\Delta^{\dagger} \Delta \Delta^{\dagger} \Delta] + \lambda_4 (\Phi^{\dagger} \Phi) \text{Tr}(\Delta^{\dagger} \Delta) + \lambda_5 \Phi^{\dagger} \Delta \Delta^{\dagger} \Phi$$

Minimal Type II Potential

$$V(\Phi, \Delta) = -m^2 \Phi^{\dagger} \Phi + M^2 \operatorname{Tr}(\Delta^{\dagger} \Delta) + \left[\mu \Phi^{\mathrm{T}} \mathrm{i} \tau_2 \Delta^{\dagger} \Phi + \mathrm{h.c.} \right] + \lambda_1 (\Phi^{\dagger} \Phi)^2 + \lambda_2 \left[\operatorname{Tr}(\Delta^{\dagger} \Delta) \right]^2 + \lambda_3 \operatorname{Tr}[\Delta^{\dagger} \Delta \Delta^{\dagger} \Delta] + \lambda_4 (\Phi^{\dagger} \Phi) \operatorname{Tr}(\Delta^{\dagger} \Delta) + \lambda_5 \Phi^{\dagger} \Delta \Delta^{\dagger} \Phi$$

- How to discover ∆ scalars ?
- How to determine potential parameters ?

Minimal Type II Potential

$$V(\Phi, \Delta) = -m^2 \Phi^{\dagger} \Phi + M^2 \operatorname{Tr}(\Delta^{\dagger} \Delta) + \left[\mu \Phi^{\mathrm{T}} \mathrm{i} \tau_2 \Delta^{\dagger} \Phi + \mathrm{h.c.} \right] + \lambda_1 (\Phi^{\dagger} \Phi)^2 + \lambda_2 \left[\operatorname{Tr}(\Delta^{\dagger} \Delta) \right]^2 + \lambda_3 \operatorname{Tr}[\Delta^{\dagger} \Delta \Delta^{\dagger} \Delta] + \lambda_4 (\Phi^{\dagger} \Phi) \operatorname{Tr}(\Delta^{\dagger} \Delta) + \lambda_5 \Phi^{\dagger} \Delta \Delta^{\dagger} \Phi$$

- How to discover ∆ scalars ?
- How to determine potential parameters ?

Parameter	Significance	Probe		
μ	Type II m_v	Neutrino mass		
λ_5	∆ mass spectrum	Δ mass splittings		
λ_4	Higgs portal	H⁺ decays		
λ _{2,3}	Δ self interaction	Challenging		

Production	Decay mode + final state	Regime
H++H	+ + - -	Small v_{Δ}
H++H++	$W^+W^+W^-W^- \rightarrow I^+I^+I^-I^- + MET$	Large v_{Δ}
H++H-	$I^+I^+hW^- \rightarrow I^+I^+bb\ I^- + MET$	Intermediate v_{Δ}
H++H-	$W^+W^+hW^- \rightarrow I^+I^+bb\ I^- + MET$	Intermediate v_{Δ}

39

Probing the Scalar Potential: λ_5

$$m_{H^{++}}^2 - m_{H^+}^2 \simeq -\frac{\lambda_5}{4} v_H^2$$

$$\Phi = \begin{bmatrix} \varphi^+ \\ \frac{1}{\sqrt{2}}(\varphi + v_{\Phi} + i\chi) \end{bmatrix} \qquad \Delta = \begin{bmatrix} \frac{\Delta^+}{\sqrt{2}} & H^{++} \\ \frac{1}{\sqrt{2}}(\delta + v_{\Delta} + i\eta) & -\frac{\Delta^+}{\sqrt{2}} \end{bmatrix}$$

$$\left(\begin{array}{c}\varphi\\\delta\end{array}\right) = \left(\begin{array}{c}\cos\alpha & -\sin\alpha\\\sin\alpha & \cos\alpha\end{array}\right) \left(\begin{array}{c}h\\H\end{array}\right)$$

$$\tan 2\alpha \approx \frac{v_{\Delta}}{v_{\Phi}} \cdot \frac{2v_{\Phi}^2 \lambda_{45} - 4m_{\Delta}^2}{2\lambda_1 v_{\Phi}^2 - m_{\Delta}^2} \approx \frac{v_{\Delta}}{v_{\Phi}} \cdot \frac{2v_{\Phi}^2 \lambda_{45} - 4m_{\Delta}^2}{m_h^2 - m_{\Delta}^2}$$

44

$$\Phi = \begin{bmatrix} \varphi^+ \\ \frac{1}{\sqrt{2}}(\varphi + v_{\Phi} + i\chi) \end{bmatrix} \qquad \Delta = \begin{bmatrix} \frac{\Delta^+}{\sqrt{2}} & H^{++} \\ \frac{1}{\sqrt{2}}(\delta + v_{\Delta} + i\eta) & -\frac{\Delta^+}{\sqrt{2}} \end{bmatrix}$$

$$\left(\begin{array}{c}\varphi\\\delta\end{array}\right) = \left(\begin{array}{c}\cos\alpha & -\sin\alpha\\\sin\alpha & \cos\alpha\end{array}\right) \left(\begin{array}{c}h\\H\end{array}\right)$$

Triplet mass scale

$$\tan 2\alpha \approx \frac{v_{\Delta}}{v_{\Phi}} \cdot \frac{2v_{\Phi}^2 \lambda_{45} - 4m_{\Delta}^2}{2\lambda_1 v_{\Phi}^2 - m_{\Delta}^2} \approx \frac{v_{\Delta}}{v_{\Phi}} \cdot \frac{2v_{\Phi}^2 \lambda_{45} - 4m_{\Delta}^2}{m_h^2 - m_{\Delta}^2}$$

Vertex	Coupling			
hAZ	$-\frac{g}{2\cos\theta_W}(\cos\alpha\sin\beta_0 - 2\sin\alpha\cos\beta_0)$			
HZZ	$\frac{2iem_Z}{\sin 2\theta_W} (2\sin\beta_0\cos\alpha - \cos\beta_0\sin\alpha)$			
HW^+W^-	$igm_Z \cos \theta_W (\sin \beta_0 \cos \alpha - \cos \beta_0 \sin \alpha)$			
hH^-W^+	$\frac{ig}{2}(\sin\beta_{\pm}\cos\alpha - \sqrt{2}\cos\beta_{\pm}\sin\alpha)$			

Vertex	Coupling		
hAZ	$-\frac{g}{2\cos\theta_W}(\cos\alpha\sin\beta_0 - 2\sin\alpha\cos\beta_0)$		
HZZ	$\frac{2iem_Z}{\sin 2\theta_W} (2\sin\beta_0\cos\alpha - \cos\beta_0\sin\alpha)$		
HW ⁺ W ⁻	$igm_Z \cos \theta_W (\sin \beta_0 \cos \alpha - \cos \beta_0 \sin \alpha)$		
hH^-W^+	$\frac{ig}{2}(\sin\beta_{\pm}\cos\alpha - \sqrt{2}\cos\beta_{\pm}\sin\alpha)$		

Production	Decay mode + final state	Regime		
H++H-	l+l+hW- → l+l+ bb l- + MET	Intermediate v_{Δ}		
H++H-	$W^+W^+hW^- \rightarrow I^+I^+bb\ I^- + MET$	Intermediate v_{Δ}		

Vertex	Coupling		
hAZ	$-\frac{g}{2\cos\theta_W}(\cos\alpha\sin\beta_0 - 2\sinlpha\cos\beta_0)$		
HZZ	$\frac{2iem_Z}{\sin 2\theta_W} (2\sin\beta_0\cos\alpha - \cos\beta_0\sin\alpha)$		
HW ⁺ W ⁻	$igm_Z \cos \theta_W (\sin \beta_0 \cos \alpha - \cos \beta_0 \sin \alpha)$		
hH^-W^+	$\frac{ig}{2}(\sin\beta_{\pm}\cos\alpha - \sqrt{2}\cos\beta_{\pm}\sin\alpha)$		

V. Outlook

- Uncovering the origin of m_v is a key open problem in particle physics and one for which a variety of experimental probes are needed
- For m_v dynamics at the TeV scale or below, hadron colliders could provide unique tests of the see saw mechanism
- The tri-lepton channel can be used to probe the heavylight neutrino mixing angle, and a comparison of HL/HE-LHC and 100 TeV pp collider searches could distinguish the minimal LRSM scenario from other see saw mechanisms
- A 100 TeV pp collider could significantly extend the discovery reach for scalars associated with the type II scenario and probe a variety of scalar sector couplings
- There exist many opportunities for additional studies others are encouraged to get involved!

Heavy-Light Neutrino Mixing

Minimal Model

$$\Theta = \sqrt{\epsilon - M_N^{-1} M_\nu} = M_D^* M_N^{-1} \qquad \Theta_L = \Theta V_R^*, \quad \Theta_R = \Theta V_L^*.$$

$$M_D = V_L^* \hat{M}_N \sqrt{\frac{v_L}{v_R} - \frac{\hat{M}_\nu}{\hat{M}_N}} V_L^\dagger$$

Non-Minimal Model

$$\Theta_L = \frac{1}{\sqrt{2}} M_D^{\dagger} V_R \hat{M}_N^{-1}$$

$$V_R^{\dagger} M_D = \hat{M}_N U_R^{\dagger} \frac{1}{\sqrt{\hat{\mu}}} \mathcal{R} \sqrt{m_\nu} V_L^{\dagger}$$

Analysis: Backgrounds

ttZ, ttW, tt (j), WZ (j), 3W, Z/γ (j)

Cuts

Cut description	
$e^+e^+\mu^-$, no b jets and no additional leptons	signal selection
$p_{T,e^+}^{lead} > 200 \text{ GeV}, p_{T,e^+}^{sub} > 100 \text{ GeV}, p_{T,\mu^-}^{lead} > 100 \text{ GeV}$	reduce all backgrounds
$E_T > 100 \text{ GeV}$	reduce mostly $t\bar{t}(j)$ and $Z/\gamma(j)$
$ m_{inv}(e^+e^+) - 91.\bar{2}) > 10 \text{ GeV}$	reduce mostly $WZ(j)$
$m_T(e_{sub}^+ \not\!\!\!E_T) < 150 \text{ GeV}$	select channel shown in Fig. 1 (right)
$m_T(e^+e^+\mu^-E_T) > M_{W_R}/2$	reduce all backgrounds

Analysis: Cuts

100 TeV pp

Cut description	
$e^+e^+\mu^-$, no b jets and no additional leptons	signal selection
$p_{T,e^+}^{lead} > 200 \text{ GeV}, p_{T,e^+}^{sub} > 100 \text{ GeV}, p_{T,\mu^-}^{lead} > 100 \text{ GeV}$	reduce all backgrounds
$E_T > 100 \text{ GeV}$	
$ m_{inv}(e^+e^+) - 91.2) > 10 \text{ GeV}$	reduce mostly $WZ(j)$
$m_T(e_{sub}^+ \not\!\!\!E_T) < 150 \; { m GeV}$	select channel shown in Fig. 1 (right)
$\underline{\qquad} m_T(e^+e^+\mu^- E_T) > M_{W_R}/2$	reduce all backgrounds

Analysis: Cuts

100 TeV pp

Cut description	
$e^+e^+\mu^-$, no b jets and no additional leptons	signal selection
$p_{T,e^+}^{lead} > 200 \text{ GeV}, p_{T,e^+}^{sub} > 100 \text{ GeV}, p_{T,\mu^-}^{lead} > 100 \text{ GeV}$	reduce all backgrounds
$E_T > 100 \text{ GeV}$	
$ m_{inv}(e^+e^+) - 91.\bar{2}) > 10 \text{ GeV}$	reduce mostly $WZ(j)$
$m_T(e_{sub}^+ E_T) < 150 \text{ GeV}$	select channel shown in Fig. 1 (right)
$m_T(e^+e^+\mu^- E_T) > M_{W_R}/2$	reduce all backgrounds

Analysis: Cuts

	Backgrounds				Signal			
$\sqrt{s} = 13$ TeV	$t\overline{t}Z$	$t\overline{t}W$	$t\bar{t}(j)$	WZ(j)	3W	$Z/\gamma(j)$	$m_N(100 \text{ GeV})$	$m_N(500 \text{ GeV})$
$e^+e^+\mu^-$ (b-veto)	11.8	74.9	23058	24.8	6.71	901	1293	371
P_T cuts	0.325	3.75	216	0.215	2.33	5.31	825	253
$ E_T { m GeV} $		1.85	117	0.0761	1.06	0.0911	646	188
$m_{inv}(e^+ e^+)$	0.155	1.82	113	0.0761	1.05	0	646	188
$m_T(e_{sub}^+ \not\!\!\!E_T)$	0.0582	0.743	48.4	0.0277	0.491	0	622	176
$\underline{m_T(e^+e^+\mu^- \not\!\!\! E_T)}$	0	7.82×10^{-3}	0	0	0.0169	0	597	158

Analysis: Efficiencies

$$r \equiv \frac{Br(N_1 \to e^+(W^- \to \mu^- \bar{\nu_{\mu}}))}{Br(N_1 \to \mu^-(W^+ \to e^+ \nu_e))}$$

