
1 

Probing the See Saw Mechanism at 
Future Hadron Colliders 

IAS Future Collider Workshop 
January 2019

M.J. Ramsey-Musolf 
 
U Mass Amherst

http://www.physics.umass.edu/acfi/ 

My pronouns: he/him/his 

1812.01630:  J.C. Helo, H. Li, N. Neill, MJRM, J.C. Vasquez 
1810.09450: Y. Du, A. Dunbrack, MJRM, J.-H. Yu 
1806.08499: B. Dev, MJRM, Y. Zhang 



2 

Goals For This Talk 

•  Illustrate how studies of the tri-lepton channel at the 
HL/HE-LHC & a 100 TeV pp collider may help 
distinguish between mLRSM and non-minimal 
LRSM/minimal types I or II see saw mechanisms 

•  Illustrate reach of a 100 TeV collider for discovery 
and characterization of type II see saw scalar 
sector 

•  Encourage future work 
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Outline 

I.  Context 

II.  Type I+II See Saw & LRSM 

III.  Tri-lepton Channel at pp Colliders 

IV.  Probing the Scalar Potential 

V.  Outlook 
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I. Context 
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Neutrino Mass Models 

•  Type I see-saw 

•  Type II see-saw 

•  Type III see-saw 

•  Inverse see-saw 

•  Radiative  

“νSM”, “νMSSM”, 
LRSM LRSM 

LRSM 

MSSM 

+ combinations & many other examples  

GUTs 
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Type I See-Saw 

Dirac Majorana 

O5 =
��H

⇤
�̄� H

†
H (25)

M⌃± �M⌃0 ⇠
↵

4⇡
MW (26)

L =
g

2
hij

⇥
L̄

Ci"�LL
j
⇤
+ (L$ R) + h.c. (27)

����
�Q

e

W

Q
e

W

���� = 0.14
|hee|

2

(M�/1 TeV)2 (28)

|Vud|
2 + |Vus|

2 = |Vud|
2


1 +

|Vus|
2

|Vud|
2

�
(29)

Lmass = yL̄H̃⌫R + h.c. (30)

Lmass =
y

⇤
L̄

c
H̃H̃

T
L + h.c. (31)

3

O5 =
��H

⇤
�̄� H

†
H (25)

M⌃± �M⌃0 ⇠
↵

4⇡
MW (26)

L =
g

2
hij

⇥
L̄

Ci"�LL
j
⇤
+ (L$ R) + h.c. (27)

����
�Q

e

W

Q
e

W

���� = 0.14
|hee|

2

(M�/1 TeV)2 (28)

|Vud|
2 + |Vus|

2 = |Vud|
2


1 +

|Vus|
2

|Vud|
2

�
(29)

Lmass = yL̄H̃⌫R + h.c. (30)

Lmass =
y

⇤
L̄

c
HH

T
L + h.c. (31)

�(⌫R ! `H) 6= �(⌫R !
¯̀H⇤) (32)

m⌫ =
m

2
D

MR

(33)

3

Low-energy eff theory 
Λ = mN
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H H

Type I:    NR SU(2)L singlet 
Type III:  NR SU(2)L triplet 



11 

Type I See-Saw 

Dirac Majorana 

O5 =
��H

⇤
�̄� H

†
H (25)

M⌃± �M⌃0 ⇠
↵

4⇡
MW (26)

L =
g

2
hij

⇥
L̄

Ci"�LL
j
⇤
+ (L$ R) + h.c. (27)

����
�Q

e

W

Q
e

W

���� = 0.14
|hee|

2

(M�/1 TeV)2 (28)

|Vud|
2 + |Vus|

2 = |Vud|
2


1 +

|Vus|
2

|Vud|
2

�
(29)

Lmass = yL̄H̃⌫R + h.c. (30)

Lmass =
y

⇤
L̄

c
H̃H̃

T
L + h.c. (31)

3

O5 =
��H

⇤
�̄� H

†
H (25)

M⌃± �M⌃0 ⇠
↵

4⇡
MW (26)

L =
g

2
hij

⇥
L̄

Ci"�LL
j
⇤
+ (L$ R) + h.c. (27)

����
�Q

e

W

Q
e

W

���� = 0.14
|hee|

2

(M�/1 TeV)2 (28)

|Vud|
2 + |Vus|

2 = |Vud|
2


1 +

|Vus|
2

|Vud|
2

�
(29)

Lmass = yL̄H̃⌫R + h.c. (30)

Lmass =
y

⇤
L̄

c
HH

T
L + h.c. (31)

�(⌫R ! `H) 6= �(⌫R !
¯̀H⇤) (32)

m⌫ =
m

2
D

MR

(33)

3

Low-energy eff theory 
Λ = mN

νL νL

H H

ΔL

Type II:    ΔL SU(2)L triplet 

νL νLNR

H H

Type I:    NR SU(2)L singlet 
Type III:  NR SU(2)L triplet 



12 

Type II See-Saw 

Dirac Majorana 

O5 =
��H

⇤
�̄� H

†
H (25)

M⌃± �M⌃0 ⇠
↵

4⇡
MW (26)

L =
g

2
hij

⇥
L̄

Ci"�LL
j
⇤
+ (L$ R) + h.c. (27)

����
�Q

e

W

Q
e

W

���� = 0.14
|hee|

2

(M�/1 TeV)2 (28)

|Vud|
2 + |Vus|

2 = |Vud|
2


1 +

|Vus|
2

|Vud|
2

�
(29)

Lmass = yL̄H̃⌫R + h.c. (30)

Lmass =
y

⇤
L̄

c
H̃H̃

T
L + h.c. (31)

3

O5 =
��H

⇤
�̄� H

†
H (25)

M⌃± �M⌃0 ⇠
↵

4⇡
MW (26)

L =
g

2
hij

⇥
L̄

Ci"�LL
j
⇤
+ (L$ R) + h.c. (27)

����
�Q

e

W

Q
e

W

���� = 0.14
|hee|

2

(M�/1 TeV)2 (28)

|Vud|
2 + |Vus|

2 = |Vud|
2


1 +

|Vus|
2

|Vud|
2

�
(29)

Lmass = yL̄H̃⌫R + h.c. (30)

Lmass =
y

⇤
L̄

c
HH

T
L + h.c. (31)

�(⌫R ! `H) 6= �(⌫R !
¯̀H⇤) (32)

m⌫ =
m

2
D

MR

(33)

3

Introduce “Complex Triplet”: ΔL ~ (1, 3, 2)  

O5 =
��H

⇤
�̄� H

†
H (25)

M⌃± �M⌃0 ⇠
↵

4⇡
MW (26)

L =
g

2
hij

⇥
L̄

Ci"�LL
j
⇤
+ (L$ R) + h.c. (27)

L =
g

2
hij

⇥
L̄

Ci"�LL
j
⇤
+ h.c. (28)

����
�Q

e

W

Q
e

W

���� = 0.14
|hee|

2

(M�/1 TeV)
2 (29)

|Vud|
2
+ |Vus|

2
= |Vud|

2


1 +

|Vus|
2

|Vud|
2

�
(30)

Lmass = yL̄H̃⌫R + h.c. (31)

Lmass =
y

⇤
L̄

c
HH

T
L + h.c. (32)

�(⌫R ! `H) 6= �(⌫R !
¯̀H

⇤
) (33)

m⌫ =
m

2
D

MR

(34)

�
⌫1 ⌫2 ⌫3

�
= U

0

@
⌫e

⌫µ

⌫⌧

1

A (35)

H =
�

a
†
⌫

aN

� ✓
0 mD

0 MN

◆ ✓
a⌫

aN

◆
+ h.c. (36)

3

νL νL

H H

ΔL

c⌧ ⇡
1.2 fm

g
4

X

✓
MX

MY

◆4 ✓
1TeV

MY

◆
(89)

c⌧ ⇡
0.02 fm

g
2

Y

✓
1TeV

MY

◆
(90)

c⌧ ⇡
1.2 fm

g
4

X

✓
MX

�M

◆4 ✓
1TeV

�M

◆
(91)

✓
MX

�M

◆
>> 1 (92)

gX << 1 (93)

U↵N ⇠
mD

MN

(94)

U↵N ⇠

r
vL

vR
�

m⌫

MN

(95)

+

⇣
NR, ÑR
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✔ 

✔ 

✔ 

✔ 

This Talk: How can we probe with LHC &  future pp colliders 
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Comments 

•  Many other earlier works on see saw collider 
pheno (e.g. Keung & Senjanovic ‘83, Perez 
et al ‘08, Nemevsek et al ‘12, Han et al ‘13, 
Izaguirre & Shuve ’15,…) Apologies to 
others not cited here ! 

•  Following assumes see saw scale at the 10’s 
of TeV or below 
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II. Types I + II See Saw & LRSM 



See Saw Scenarios 

Model Class LRSM ΔV Minimal 
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✔ 

✔ 

✔ 

✔ 

How to distinguish minimal LRSM from non-
minimal LRSM or other minimal scenarios  
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Minimal Left-Right Symmetric 
Model 

Two sources of mν : 
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⌘
(81)

�L =

✓
�

+
p

2 �
+

�
0

��
+
p

2

◆
(82)

mL ⇠ ghL h�
0
L
i (83)

mN ⇠ ghR h�
0
R
i (84)

7

gX << 1 (78)

U↵N ⇠
mD

MN

(79)

U↵N ⇠

r
vL

vR

�
m⌫

MN

(80)

+

⇣
NR, ÑR
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Non-Minimal Left-Right Symmetric Model 

LRSM inverse see saw:  

Figure 1: Feynman diagrams for the WR production and leptonic decay N ! e+µ�⌫, where ⌫
can be either a ⌫e or ⌫̄µ.

effectively assuming type I see-saw dominance for the light neutrino masses. Notice that the
choice vL small is technically natural, as discussed originally in Ref. [6] and more recently
revisited in Ref. [37]. Finally, notice that the mixing matrix ⇥ (equivalently MD) is a complex
matrix, so that no issues arrise due to the �1 factor inside the square root and the fact that ✏ is a
complex quantity. In any case, this phase phase factor has no impact in our analysis below. For
a discussion of its physical significance see, for instance, Ref. [36].

In the next section and using the above leptonic channel, we study the sensitivity of the
LHC, HE-LHC and a 100 TeV pp collider, to the mixing in Eq. (26) as a function of MWR and
the lightest heavy neutrino mass mN , for benchmark values of the other heavy neutrinos. Later,
from this sensitivity and using Eq. (15), one can infer the values of MD that can be probed at
the LHC and the next generation of hadronic colliders.

2.2 “Non minimal” left-right symmetric model

As explained in the previous section, in the mLRSM the gauge group is broken to the SM group
through the triplet �R and the bidoublet scalar �. This construction generates a seesaw mass
for the right-handed neutrinos from the vacuum expectation value of the �R. Here, we will
consider a slightly different LR scenario, a ”non-minimal” model, in which now the LR group
is broken through a doublet scalar in the (1,2,-1) representation of G [38,39]. Adding an extra
vector of gauge singlet fermions S = (S1, S2, S3)T to the particle content the neutrino masses
will be generated now by an inverse seesaw mechanism [40, 41]. The inverse seesaw scenario
in the context of left-right symmetry was studied in detail in Ref. [42]. In this section, we will
only review the most important results.

We work in the basis in which the charged lepton mass matrix is diagonal. The inverse
seesaw neutrino mass matrix in the interaction basis for the neutral states N = (⌫L, N c, Sc)T

can be written in a 3⇥ 3 notation as:

M =

 
0 MT

D 0
MD 0 MN

0 MT
N µ

!
(27)

8

where MD, MN , and µ denote 3⇥ 3 matrices and the sub-matrix µ is taken to be diagonal. As-
suming the sub-matrices MD, MN , µ have mass scales arranged hierarchically, MN � MD, µ,
the light neutrino mass matrix M⌫ can be expressed in terms of the matrices in Eq. (27) as

M⌫ ' MT
D

1

MT
N

µ
1

MN
MD. (28)

Using the bi-unitary transformations

M⌫ = V ⇤
Lm⌫V

†
L , MN = VRM̂NU

†
R, (29)

the mass matrix M can be diagonalized into

M̂ =

0

@
m⌫ 0 0
0 M̂�

N 0
0 0 M̂+

N

1

A . (30)

Here M̂�
N , M̂

+
N and M̂N are diagonal mass matrices with M̂±

N = M̂N ±
1
2µ

V and µV =

V T
R µV T

R . The neutral mass eigenstates N 0 = (⌫, N�, N+)T correspond to three light neutrinos
and three pairs of almost degenerate heavy neutrinos with mass eigenvalues mN±

i
= (M̂±

N )ii =

(M̂N)ii ±
1
2(µ

V )ii. 2

Using Eqs (28), (29) the light neutrino mass matrix can be written as

m⌫ = V T
L MT

D

1

MT
N

µ
1

MN
MDVL. (31)

Following the parameterization developed by Casas and Ibarra [17] we can now write MD as:

MD = MN
1
p
µ̂
R
p
m⌫V

†
L . (32)

Here the matrix R is an arbitrary complex orthogonal matrix. Rewriting MN using Eq. (28) we
obtain:

V †
RMD = M̂NU

†
R

1
p
µ̂
R
p
m⌫V

†
L , (33)

which express V †
RMD in terms of the low energy observables m⌫ , VL allowing us to reproduce

the neutrino data. Notice that in practice, the arbitrariness of the matrix R is a consequence
of the fact that for the non-minimal models, the Dirac mass matrix is arbitrary. This feature
precludes a direct mapping of neutrino data onto MD in non-minimal models.

2Here the three pairs of – almost degenerate – neutrinos correspond to the so-called ”quasi-Dirac” neutrinos
[42, 43].
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Mass matrix diagonalization 

where ↵ and ✓L are called the “spontaneous” CP phase and vL ⌧ v21+v22 ⌧ v2R. All the physical
effects due to ✓L can be neglected, since this phase is always accompanied by the small vL.

Under the discrete left-right symmetry the fields transform as follows:

P :

(
PfLP�1 = �0fR
P�P�1 = �†

P�(L,R)P
�1 = ��(R,L)

C :

8
<

:

CfLC�1 = C(f̄R)T

C�C�1 = �T

C�(L,R)C
�1 = ��⇤

(R,L)

(5)

where �µ (µ = 0, 1, 2, 3.) are the gamma matrices and C is the charge conjugation operator.
Lepton masses: lepton masses are due to the following Yukawa interactions (once the Higgs

fields take their v.e.v along their neutral components)

LY = L̄L(Y��+ Ỹ��̃)LR + 1
2(L

T
LCi�2Y�L�LLL

+LT
RCi�2Y�R�RLR) + h.c., (6)

where �̃ = �2�⇤�2 , �2 is the Pauli matrix and C ⌘ i�2�0.
Invariance of the Lagrangian under the Left-Right symmetry requires the Yukawa couplings

to satisfy

P :

8
<

:

Y�R,L = Y�L,R

Y� = Y †
�

Ỹ� = Ỹ †
�

, C :

8
<

:

Y�R,L = Y ⇤
�L,R

Y� = Y T
�

Ỹ� = Ỹ T
�

(7)

Consistent with the above notation, the neutrino mass matrix of neutrinos is of the form [5,6]

L⌫ =
1

2
( ⌫ N c )TL C

✓
ML M⇤

D

M †
D MR

◆⇣
⌫
N c

⌘

L
+ h.c., (8)

where N c
L ⌘ CN̄T

R and ML, MR and MD are 3⇥ 3 matrices given by

ML ⌘ Y�LvLe
i✓L , (9)

MR ⌘ Y ⇤
�R

vR, (10)
MD ⌘ v1Y� + Ỹ�v2e�i↵. (11)

After diagonalization, the light and heavy neutrino mass matrices takes the see-saw form:

M⌫ ' ML �M⇤
D

1
MN

M †
D, (12)

MN ' MR. (13)

The contributions to the light neutrino masses proportional to MD and ML are called the Type
I and Type II see-saw contributions respectively. It follows from the seesaw formula that the
eigenstates corresponding to Eqs. (12) are given by

✓
⌫ 0

N 0c

◆
=

✓
1 ⇥

�⇥T 1

◆⇣
⌫
N c

⌘
, (14)

5

where the heavy-light neutrino mixing is given by

⇥ ' M⇤
DM

�1
N . (15)

Finally, the charged lepton mass matrix is given by

Ml = Y�v2ei↵ + Ỹ�v1. (16)

As usual, the mass matrices can be diagonalized by the bi-unitary transformations

Ml = UlLM̂lU
†
lR,

M⌫ = U⇤
⌫ M̂⌫U †

⌫ , MN = U⇤
NM̂NU

†
N , (17)

where M̂l, M̂⌫ and M̂N are diagonal matrices with real, positive eigenvalues.
Charged gauge interactions with leptons: from the covariant derivative and in the mass

eigenstates basis, the charged current Lagrangian is

Lcc =
g
p
2
(l̄LVL /WL⌫L � l̄L⇥L /WLN

c
L + l̄RVR /WRNR + l̄R⇥R /WR⌫

c
R) + h.c., (18)

where NR ⌘ C(N̄ c
L)

T = i�2�0(N c
L)

⇤, ⌫c
R ⌘ C(⌫̄L)T and �0 and �2 are the gamma matrices and

the mixing matrices VL, VR, ⇥L and ⇥R are given by

VL = U †
lLU⌫ , ⇥L = U †

lL⇥UN (19)
VR = U †

lRU
⇤
N , ⇥R = U †

lR⇥
†U⇤

⌫ (20)

We may use the freedom of rephasing the charged lepton fields to remove three unphysical
phases from VL, which ends up having 3 mixing angles and 3 phases, namely one Dirac and two
Majorana phases. Since the freedom of rephasing the charged lepton is already used for VL, its
right-handed analog –the leptonic mixing matrix VR– is a general 3⇥ 3 unitary matrix and may
be therefore parametrized by 3 mixing angles and 6 phases.

A comment regarding the mixing matrices ⇥L and ⇥R is in order: for charge conjugation as
the LR symmetry, without loss of generality one can choose UlL = UlR = 1, such that VL = U⌫

and VR = U⇤
N . In this case, the mixing matrices can be written in the form

⇥L = ⇥V ⇤
R, ⇥R = ⇥V ⇤

L . (21)

For Parity as the LR symmetry, it is no longer true that one can assume UlL = UlR = 1.
Nevertheless, since the Dirac mass matrix is hermitian with a very good approximation, even in
this case one can write

⇥L = ⇥V ⇤
R

h
1 +O

⇣
M̂l tan 2� sin↵

⌘i
, ⇥R = ⇥V ⇤

L

h
1 +O

⇣
M̂l tan 2� sin↵

⌘i
. (22)
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where ↵ and ✓L are called the “spontaneous” CP phase and vL ⌧ v21+v22 ⌧ v2R. All the physical
effects due to ✓L can be neglected, since this phase is always accompanied by the small vL.
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After diagonalization, the light and heavy neutrino mass matrices takes the see-saw form:

M⌫ ' ML �M⇤
D

1
MN

M †
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The contributions to the light neutrino masses proportional to MD and ML are called the Type
I and Type II see-saw contributions respectively. It follows from the seesaw formula that the
eigenstates corresponding to Eqs. (12) are given by
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Finally, the charged lepton mass matrix is given by

Ml = Y�v2ei↵ + Ỹ�v1. (16)

As usual, the mass matrices can be diagonalized by the bi-unitary transformations
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⌫ M̂⌫U †
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where M̂l, M̂⌫ and M̂N are diagonal matrices with real, positive eigenvalues.
Charged gauge interactions with leptons: from the covariant derivative and in the mass

eigenstates basis, the charged current Lagrangian is

Lcc =
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where NR ⌘ C(N̄ c
L)

T = i�2�0(N c
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⇤, ⌫c
R ⌘ C(⌫̄L)T and �0 and �2 are the gamma matrices and

the mixing matrices VL, VR, ⇥L and ⇥R are given by

VL = U †
lLU⌫ , ⇥L = U †

lL⇥UN (19)
VR = U †

lRU
⇤
N , ⇥R = U †

lR⇥
†U⇤

⌫ (20)

We may use the freedom of rephasing the charged lepton fields to remove three unphysical
phases from VL, which ends up having 3 mixing angles and 3 phases, namely one Dirac and two
Majorana phases. Since the freedom of rephasing the charged lepton is already used for VL, its
right-handed analog –the leptonic mixing matrix VR– is a general 3⇥ 3 unitary matrix and may
be therefore parametrized by 3 mixing angles and 6 phases.

A comment regarding the mixing matrices ⇥L and ⇥R is in order: for charge conjugation as
the LR symmetry, without loss of generality one can choose UlL = UlR = 1, such that VL = U⌫

and VR = U⇤
N . In this case, the mixing matrices can be written in the form

⇥L = ⇥V ⇤
R, ⇥R = ⇥V ⇤

L . (21)

For Parity as the LR symmetry, it is no longer true that one can assume UlL = UlR = 1.
Nevertheless, since the Dirac mass matrix is hermitian with a very good approximation, even in
this case one can write

⇥L = ⇥V ⇤
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Figure 10: Value for the heavy-light mixing angle combination |⇥Nµ|
2 + |⇥Ne|

2 (right) and
the Dirac Mass MD (left) as a function of the heavy neutrino mass, for MWR = 6 TeV for a 2�
exclusion region shown in Fig. 9. We assume VL = V ⇤

R and the upper limit on light neutrino
masses of m⌫ = 0.5 eV [46].

Therefore and for the mLRSM, it is interesting to compare the exclusion lines obtained
in Fig. 9 with the prediction one can make in this case. In Fig. 10 (left panel) we plot the
combination |(⇥L)Nµ|

2+ |(⇥L)Ne|
2 given by Eq. (15), as a function of mN together with the 2�

and 5� significance regions expected at the 100 TeV pp collider. We see that at the 100 TeV pp

collider, the heavy-light mixing ⇥ can be probed for values as small as |(⇥L)Nµ|
2+|(⇥L)Ne|

2
⇠

10�12. Notice that since |(⇥L)Nµ|
2 + |(⇥L)Ne|

2
⇠ 10�12 is the sum of two positive terms one

can safely assume that each |(⇥L)Nµ|
2 and |(⇥L)Ne|

2
⇠ 10�12 are individually smaller than

10�12.
In what follows, we discuss how the above estimates translate to the sensitivity for the

Dirac mass matrix elements (MD)eN and (MD)µN at the 100 TeV pp collider. To this end, it is
instructive to show the relation between the Dirac mass matrix MD and the heavy, light neutrino
mass matrices when |(VL)i,j| = |(VR)i,j|, since in this case the relation is simple enough to be
written in a compact analytic form for both C and P cases. From Eq (26) and for C as the LR
symmetry, the Dirac mass matrix MD can be written as [15],

MD = V ⇤
LM̂N

s
vL
vR

�
M̂⌫

M̂N

V †
L . (39)

Notice that this connection is lost for the non-minimal models, as can be explicitly seen in
Eq. (33), since in this case there is an orthogonal, complex matrix R which makes the Dirac
mass arbitrary.

The same considerations apply also for P as the LR symmetry where the Dirac mass matrix
can be written as [16]

MD = VLM̂N

s
vL
vR

�
M̂⌫

M̂N

V †
L (40)

21

where MD, MN , and µ denote 3⇥ 3 matrices and the sub-matrix µ is taken to be diagonal. As-
suming the sub-matrices MD, MN , µ have mass scales arranged hierarchically, MN � MD, µ,
the light neutrino mass matrix M⌫ can be expressed in terms of the matrices in Eq. (27) as

M⌫ ' MT
D

1

MT
N

µ
1

MN
MD. (28)

Using the bi-unitary transformations

M⌫ = V ⇤
Lm⌫V

†
L , MN = VRM̂NU

†
R, (29)

the mass matrix M can be diagonalized into

M̂ =

0

@
m⌫ 0 0
0 M̂�

N 0
0 0 M̂+

N

1

A . (30)

Here M̂�
N , M̂

+
N and M̂N are diagonal mass matrices with M̂±

N = M̂N ±
1
2µ

V and µV =

V T
R µV T

R . The neutral mass eigenstates N 0 = (⌫, N�, N+)T correspond to three light neutrinos
and three pairs of almost degenerate heavy neutrinos with mass eigenvalues mN±

i
= (M̂±

N )ii =

(M̂N)ii ±
1
2(µ

V )ii. 2

Using Eqs (28), (29) the light neutrino mass matrix can be written as

m⌫ = V T
L MT

D

1

MT
N

µ
1

MN
MDVL. (31)

Following the parameterization developed by Casas and Ibarra [17] we can now write MD as:

MD = MN
1
p
µ̂
R
p
m⌫V

†
L . (32)

Here the matrix R is an arbitrary complex orthogonal matrix. Rewriting MN using Eq. (28) we
obtain:

V †
RMD = M̂NU

†
R

1
p
µ̂
R
p
m⌫V

†
L , (33)

which express V †
RMD in terms of the low energy observables m⌫ , VL allowing us to reproduce

the neutrino data. Notice that in practice, the arbitrariness of the matrix R is a consequence
of the fact that for the non-minimal models, the Dirac mass matrix is arbitrary. This feature
precludes a direct mapping of neutrino data onto MD in non-minimal models.

2Here the three pairs of – almost degenerate – neutrinos correspond to the so-called ”quasi-Dirac” neutrinos
[42, 43].
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Figure 10: Value for the heavy-light mixing angle combination |⇥Nµ|
2 + |⇥Ne|

2 (right) and
the Dirac Mass MD (left) as a function of the heavy neutrino mass, for MWR = 6 TeV for a 2�
exclusion region shown in Fig. 9. We assume VL = V ⇤

R and the upper limit on light neutrino
masses of m⌫ = 0.5 eV [46].

Therefore and for the mLRSM, it is interesting to compare the exclusion lines obtained
in Fig. 9 with the prediction one can make in this case. In Fig. 10 (left panel) we plot the
combination |(⇥L)Nµ|

2+ |(⇥L)Ne|
2 given by Eq. (15), as a function of mN together with the 2�

and 5� significance regions expected at the 100 TeV pp collider. We see that at the 100 TeV pp

collider, the heavy-light mixing ⇥ can be probed for values as small as |(⇥L)Nµ|
2+|(⇥L)Ne|

2
⇠

10�12. Notice that since |(⇥L)Nµ|
2 + |(⇥L)Ne|

2
⇠ 10�12 is the sum of two positive terms one

can safely assume that each |(⇥L)Nµ|
2 and |(⇥L)Ne|

2
⇠ 10�12 are individually smaller than

10�12.
In what follows, we discuss how the above estimates translate to the sensitivity for the

Dirac mass matrix elements (MD)eN and (MD)µN at the 100 TeV pp collider. To this end, it is
instructive to show the relation between the Dirac mass matrix MD and the heavy, light neutrino
mass matrices when |(VL)i,j| = |(VR)i,j|, since in this case the relation is simple enough to be
written in a compact analytic form for both C and P cases. From Eq (26) and for C as the LR
symmetry, the Dirac mass matrix MD can be written as [15],

MD = V ⇤
LM̂N

s
vL
vR

�
M̂⌫

M̂N

V †
L . (39)

Notice that this connection is lost for the non-minimal models, as can be explicitly seen in
Eq. (33), since in this case there is an orthogonal, complex matrix R which makes the Dirac
mass arbitrary.

The same considerations apply also for P as the LR symmetry where the Dirac mass matrix
can be written as [16]

MD = VLM̂N

s
vL
vR

�
M̂⌫

M̂N

V †
L (40)

21

where MD, MN , and µ denote 3⇥ 3 matrices and the sub-matrix µ is taken to be diagonal. As-
suming the sub-matrices MD, MN , µ have mass scales arranged hierarchically, MN � MD, µ,
the light neutrino mass matrix M⌫ can be expressed in terms of the matrices in Eq. (27) as

M⌫ ' MT
D

1

MT
N

µ
1

MN
MD. (28)

Using the bi-unitary transformations

M⌫ = V ⇤
Lm⌫V

†
L , MN = VRM̂NU

†
R, (29)

the mass matrix M can be diagonalized into

M̂ =

0

@
m⌫ 0 0
0 M̂�

N 0
0 0 M̂+

N

1

A . (30)

Here M̂�
N , M̂

+
N and M̂N are diagonal mass matrices with M̂±

N = M̂N ±
1
2µ

V and µV =

V T
R µV T

R . The neutral mass eigenstates N 0 = (⌫, N�, N+)T correspond to three light neutrinos
and three pairs of almost degenerate heavy neutrinos with mass eigenvalues mN±

i
= (M̂±

N )ii =

(M̂N)ii ±
1
2(µ

V )ii. 2

Using Eqs (28), (29) the light neutrino mass matrix can be written as

m⌫ = V T
L MT

D

1

MT
N

µ
1

MN
MDVL. (31)

Following the parameterization developed by Casas and Ibarra [17] we can now write MD as:

MD = MN
1
p
µ̂
R
p
m⌫V

†
L . (32)

Here the matrix R is an arbitrary complex orthogonal matrix. Rewriting MN using Eq. (28) we
obtain:

V †
RMD = M̂NU

†
R

1
p
µ̂
R
p
m⌫V

†
L , (33)

which express V †
RMD in terms of the low energy observables m⌫ , VL allowing us to reproduce

the neutrino data. Notice that in practice, the arbitrariness of the matrix R is a consequence
of the fact that for the non-minimal models, the Dirac mass matrix is arbitrary. This feature
precludes a direct mapping of neutrino data onto MD in non-minimal models.

2Here the three pairs of – almost degenerate – neutrinos correspond to the so-called ”quasi-Dirac” neutrinos
[42, 43].
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Heavy-Light Neutrino Mixing 

Minimal Model 

Non-Minimal Model 

Figure 10: Value for the heavy-light mixing angle combination |⇥Nµ|
2 + |⇥Ne|

2 (right) and
the Dirac Mass MD (left) as a function of the heavy neutrino mass, for MWR = 6 TeV for a 2�
exclusion region shown in Fig. 9. We assume VL = V ⇤

R and the upper limit on light neutrino
masses of m⌫ = 0.5 eV [46].

Therefore and for the mLRSM, it is interesting to compare the exclusion lines obtained
in Fig. 9 with the prediction one can make in this case. In Fig. 10 (left panel) we plot the
combination |(⇥L)Nµ|

2+ |(⇥L)Ne|
2 given by Eq. (15), as a function of mN together with the 2�

and 5� significance regions expected at the 100 TeV pp collider. We see that at the 100 TeV pp

collider, the heavy-light mixing ⇥ can be probed for values as small as |(⇥L)Nµ|
2+|(⇥L)Ne|

2
⇠

10�12. Notice that since |(⇥L)Nµ|
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⇠ 10�12 is the sum of two positive terms one

can safely assume that each |(⇥L)Nµ|
2 and |(⇥L)Ne|

2
⇠ 10�12 are individually smaller than

10�12.
In what follows, we discuss how the above estimates translate to the sensitivity for the

Dirac mass matrix elements (MD)eN and (MD)µN at the 100 TeV pp collider. To this end, it is
instructive to show the relation between the Dirac mass matrix MD and the heavy, light neutrino
mass matrices when |(VL)i,j| = |(VR)i,j|, since in this case the relation is simple enough to be
written in a compact analytic form for both C and P cases. From Eq (26) and for C as the LR
symmetry, the Dirac mass matrix MD can be written as [15],

MD = V ⇤
LM̂N

s
vL
vR

�
M̂⌫

M̂N

V †
L . (39)

Notice that this connection is lost for the non-minimal models, as can be explicitly seen in
Eq. (33), since in this case there is an orthogonal, complex matrix R which makes the Dirac
mass arbitrary.

The same considerations apply also for P as the LR symmetry where the Dirac mass matrix
can be written as [16]

MD = VLM̂N

s
vL
vR

�
M̂⌫

M̂N

V †
L (40)

21

where MD, MN , and µ denote 3⇥ 3 matrices and the sub-matrix µ is taken to be diagonal. As-
suming the sub-matrices MD, MN , µ have mass scales arranged hierarchically, MN � MD, µ,
the light neutrino mass matrix M⌫ can be expressed in terms of the matrices in Eq. (27) as

M⌫ ' MT
D

1

MT
N

µ
1

MN
MD. (28)

Using the bi-unitary transformations

M⌫ = V ⇤
Lm⌫V

†
L , MN = VRM̂NU

†
R, (29)

the mass matrix M can be diagonalized into

M̂ =

0

@
m⌫ 0 0
0 M̂�

N 0
0 0 M̂+

N

1

A . (30)

Here M̂�
N , M̂

+
N and M̂N are diagonal mass matrices with M̂±

N = M̂N ±
1
2µ

V and µV =

V T
R µV T

R . The neutral mass eigenstates N 0 = (⌫, N�, N+)T correspond to three light neutrinos
and three pairs of almost degenerate heavy neutrinos with mass eigenvalues mN±

i
= (M̂±

N )ii =

(M̂N)ii ±
1
2(µ

V )ii. 2

Using Eqs (28), (29) the light neutrino mass matrix can be written as

m⌫ = V T
L MT

D

1

MT
N

µ
1

MN
MDVL. (31)

Following the parameterization developed by Casas and Ibarra [17] we can now write MD as:

MD = MN
1
p
µ̂
R
p
m⌫V

†
L . (32)

Here the matrix R is an arbitrary complex orthogonal matrix. Rewriting MN using Eq. (28) we
obtain:

V †
RMD = M̂NU

†
R

1
p
µ̂
R
p
m⌫V

†
L , (33)

which express V †
RMD in terms of the low energy observables m⌫ , VL allowing us to reproduce

the neutrino data. Notice that in practice, the arbitrariness of the matrix R is a consequence
of the fact that for the non-minimal models, the Dirac mass matrix is arbitrary. This feature
precludes a direct mapping of neutrino data onto MD in non-minimal models.

2Here the three pairs of – almost degenerate – neutrinos correspond to the so-called ”quasi-Dirac” neutrinos
[42, 43].

9

Low-energy ν pheno 

Collider studies 

Low-energy ν pheno Collider studies 

Arbitrary (Casas-Ibarra) 



26 

III. Tri-Lepton Channel at pp 
Colliders 

1812.01630:  J.C. Helo, H. Li, N. Neill, MJRM, J.C. Vasquez 
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Tri-Lepton Channel 

•  Relatively clean 
•  Previous work min type I 
•  Study prompt decay region 
•  Analysis: back up slides 
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Tri-Lepton Channel 
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Figure 2: Branching ratio of the purely leptonic decays of the heavy neutrino N in the minimal
left-right symmetric model. We use the indicative limit for light neutrino masses of m⌫ = 0.5
eV [46].

This feature is due to the proportionality of the leptonic branching ratio to ⇥2
L (see Eq. (35)),

which in turn is proportional to 1/mN –see Eq. (26).
Another important feature is the increase of the leptonic branching ratio as the WR boson

mass increases. This occurs because the dominant process with one lepton and two jets has
an additional suppression of MWR . The net effect is to make the branching ratio into leptons
increase when the WR boson mass increases. Finally, the bump when mN ⇠ MW is due to the
transition from three body decay to a two-body decay through an on-shell W boson. The drop
in the decay rate due to the top quark threshold is also evident.

Regarding the processes shown in Fig. 1, we find two issues that may affect the selection
efficiency of the signal: (1) the two origins of the µ�, which is an interpretation issue and (2)
the possible jet fake background:

1. The origin of the µ�: there are two possibilities

pp ! e+N ! e+µ�(W+
! e+⌫e), (36)

and
pp ! e+N ! e+e+(W�

! µ�⌫̄µ). (37)

Namely, the final state muon can be directly produced in the decay of the heavy neutrino
N or it can also be produced in the decay of the W boson that comes from the decay of
the heavy neutrino N . Notice that the lepton flavor cannot be used to discriminate among
the two processes since the light neutrino goes undetected.

For mN > mW , the transverse mass of the subleading positron and missing transverse
energy /ET system mT (e

+
sub

/ET ) may be helpful for discriminating between the two pro-
cesses. In the process in Eq. (36) the subleading positron comes primarily from the decay
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 mLRSM N1 BR 

The mixing matrix V that relates the neutral mass eigenstates N 0and the interaction eigen-
states N via N = V N

0 can be expressed in the seesaw approximation as [42]:

V '

0

@
VL i⇥L ⇥L

0 �
i
2V

⇤
R

1
2V

⇤
R

�
p
2UR⇥

†
LVL

ip
2
UR

1p
2
UR

1

A , (34)

where the physical mixing between the heavy and light neutrinos is ⇥L = 1p
2
M †

DVRM̂
�1
N . 3

3 Collider sensitivities

As discussed in the previous section, the most promising channel for the determination of the
Dirac Yukawa coupling of neutrinos is the purely leptonic channel pp ! W±

R ! l±l±l⌥⌫.
For purposes of illustration, we focus on the process pp ! e+N ! e+µ�e+⌫ (see Fig. 1)
rather than pp ! µ+N ! µ+e�e+⌫ in order to avoid the presence of an e+e� pair in the final
state. The final state with different flavors for leptons of the same charge has a cleaner Standard
Model background and also avoids events coming from the heavy neutrino decaying through
the neutral currents (for example pp ! W+

R ! e+N ! e+⌫Z⇤
(R) ! e+e+e�⌫).

We study the main sources of background for the process pp ! e+N ! e+µ�e+⌫ for
different center of mass energies. In what follows, we discuss the LHC expected sensitivity to
the branching ratio of HNs decaying into leptons at the LHC with

p
s = 13 TeV, the high energy

LHC (HE-LHC) with
p
s = 28 TeV and a pp collider with

p
s = 100 TeV. We compare our

cross section results with those obtained in Refs. [15, 16, 44, 45] for the pp ! e+N production
and find agreement.

Assuming that the neutrinos in the final state cannot be distinguished, the decay width of
heavy neutrinos into three leptons �(N ! l±l0⌥⌫) is proportional to the heavy-light mixing and
it is of the form

�
�
N ! l±l0⌥⌫

�
=

�
|(⇥L)lN |

2 + |(⇥L)l0N |
2
� G2

F

96⇡4mN

Z m2
N

0

dx
⇡(m2

N � x)(m4
N + xm2

N � 2x2)

m2
N(1�

x
M2

W
)2

.

(35)
Where mN denotes the mass of the heavy neutrino.4 For illustration we assume VL = V ⇤

R

and the indicative upper limit on light neutrino masses
P

⌫ m⌫ = 0.5 eV [46]. In Figure 2
we show the branching ratio of the heavy neutrino N into e+µ�⌫ as a function of the lightest
heavy neutrino (HN) mass in the minimal left-right symmetric model. As can be seen from
the figure, the branching ratio into leptons decreases as the heavy neutrino mass mN increases.

3The expressions of the couplings of the heavy neutrinos to the gauge bosons are given in [42].
4In the inverse seesaw scenario, mN denotes collectively the pair of mass eigenvalues mN± for N = N±.
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Dirac Yukawa coupling of neutrinos is the purely leptonic channel pp ! W±

R ! l±l±l⌥⌫.
For purposes of illustration, we focus on the process pp ! e+N ! e+µ�e+⌫ (see Fig. 1)
rather than pp ! µ+N ! µ+e�e+⌫ in order to avoid the presence of an e+e� pair in the final
state. The final state with different flavors for leptons of the same charge has a cleaner Standard
Model background and also avoids events coming from the heavy neutrino decaying through
the neutral currents (for example pp ! W+
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We study the main sources of background for the process pp ! e+N ! e+µ�e+⌫ for
different center of mass energies. In what follows, we discuss the LHC expected sensitivity to
the branching ratio of HNs decaying into leptons at the LHC with
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s = 13 TeV, the high energy

LHC (HE-LHC) with
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s = 28 TeV and a pp collider with
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cross section results with those obtained in Refs. [15, 16, 44, 45] for the pp ! e+N production
and find agreement.

Assuming that the neutrinos in the final state cannot be distinguished, the decay width of
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Where mN denotes the mass of the heavy neutrino.4 For illustration we assume VL = V ⇤

R

and the indicative upper limit on light neutrino masses
P

⌫ m⌫ = 0.5 eV [46]. In Figure 2
we show the branching ratio of the heavy neutrino N into e+µ�⌫ as a function of the lightest
heavy neutrino (HN) mass in the minimal left-right symmetric model. As can be seen from
the figure, the branching ratio into leptons decreases as the heavy neutrino mass mN increases.

3The expressions of the couplings of the heavy neutrinos to the gauge bosons are given in [42].
4In the inverse seesaw scenario, mN denotes collectively the pair of mass eigenvalues mN± for N = N±.
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•  Relatively clean 
•  Previous work min type I 
•  Study prompt decay region 
•  Analysis: back up slides 

Dominant: N1! WR
* l ! jj l 



29 

Sensitivities 
LHC 3 ab-1 HE-LHC 12 ab-1 

100 TeV pp 30 ab-1 100 TeV pp 30 ab-1 
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Sensitivities 
LHC 3 ab-1 

mLRSM 
Non-mLRSM 

HE-LHC 12 ab-1 

100 TeV pp 30 ab-1 100 TeV pp 30 ab-1 
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Sensitivities 
LHC 3 ab-1 

mLRSM 
Non-mLRSM 

HE-LHC 12 ab-1 

100 TeV pp 30 ab-1 100 TeV pp 30 ab-1 •  Observation of the tri-lepton 
channel at the HL/HE-LHC ! 
non-minimal model or 
minimal type I 

•  Observing the tri-lepton 
channel in the mLRSM ! 
100 TeV pp collider needed  
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Interpreting a Signal 

100 TeV pp 

MWR = 6 TeV 

VL = VR
* 

 mν  < 0.5 eV 

Probing O(MeV) Dirac masses 
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IV. Probing the Scalar Potential 

•  If tri-lepton signal seen at HL/HE-LHC how 
distinguish between minimal type I, minimal 
type II,  or non-minimal LRSM ? 

•  If tri-lepton signal first seen at 100 TeV pp 
collider, how confirm it is in context of LR 
symmetry 

1810.09450: Y. Du, A. Dunbrack, MJRM, J.-H. Yu 



See Saw Scenarios 

Model Class LRSM ΔV Minimal 

 Type I  

 Type II   

 Type III 

 Inverse 

✔ 

✔ 

✖ 

✔ 

✖ 

✔ 

✖ 

✖ 

34 

✔ 

✔ 

✔ 

✔ 

•  Follow on to Perez et al ’08 

•  No assumption of LR symmetry 
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Minimal Type II Potential 

3

II. THE COMPLEX TRIPLET HIGGS MODEL

In this section, we will discuss setup of the triplet model and various model constraints. We will also discuss key
features of the model in Sec. II C and close this section by illustrating how neutrino masses are generated through a
Type-II seesaw mechanism and by discussing current constraints on the neutrino masses.

A. Model setup

The type-II seesaw model contains the SM Higgs doublet � with hypercharge Y� = 1 and the complex triplet Higgs
field � with hypercharge Y� = 2 [8] written in a matrix form [5, 6, 9, 10]

� =


'
+

1p
2
('+ v� + i�)

�
, � =

"
�

+
p
2

H
++

1p
2
(� + v� + i⌘) �

�
+

p
2

#
, (1)

where v� denotes the doublet vev satisfying
p

v
2

�
+ v

2

�
⌘ v ⇡ 246GeV, which is the scale of electroweak spontaneous

symmetry breaking (EWSB). And as will be discussed below, v� will be strongly constrained by the ⇢ parameter.
This scalar extension extension of the SM is also know as the complex triplet Higgs model (CTHM).

The kinetic Lagrangian is

Lkin = (Dµ�)
†
(D

µ
�) + Tr[(Dµ�)

†
(D

µ
�)], (2)

with the covariant derivatives

Dµ� =

✓
@µ + i

g

2
⌧
a
W

a

µ
+ i

g
0
Y�

2
Bµ

◆
�, Dµ� = @µ�+ i

g

2
[⌧

a
W

a

µ
,�] + i

g
0
Y�

2
Bµ�, (3)

where g
0 and g are the U(1)Y and SU(2)L gauge couplings, respectively. The second term in Dµ� introduces new

interactions between the electroweak gauge bosons and the triplet, which contributes to the masses of the former
when the triplet gets a nonzero vev.

We write the general CTHM potential as

V (�,�) = �m
2
�

†
�+M

2
Tr(�

†
�) +

⇥
µ�

T
i⌧2�

†
�+ h.c.

⇤
+ �1(�

†
�)

2

+ �2

⇥
Tr(�

†
�)

⇤2
+ �3Tr[�

†
��

†
�] + �4(�

†
�)Tr(�

†
�) + �5�

†
��

†
�, (4)

where m and M are the mass parameters and �i (i=1,. . ., 5) are the dimensionless quartic scalar couplings, which are
all real due to hermiticity of the Lagrangian. The µ parameter, however, is in general complex and, thus, a possible
source of CP violation (CPV). But as discussed in Ref. [129, 130], the CPV phase from µ is in fact unphysical and
can always be absorbed by a redefinition of the triplet field.

After EWSB, the minimization conditions

@V

@�j

= 0,
@V

@�j

= 0 (5)

imply that

m
2

= �1v
2

�
+

�45v
2

�

2
�
p
2µv�, (6)

M
2

=
µv

2

�
p
2v�

� �23v
2

�
�

�45v
2

�

2
, (7)

with

�ij ⌘ �i + �j . (8)

We will use the same notation below.
The scalar states are, in general, mixtures of the field components that carry the same electric charge: (', �, �, ⌘);

('±, �±); and H
±±, which is already in its mass eigenstate. The absence of a CPV phase in the potential implies

that the real and imaginary parts of the neutral doublet and triplet fields cannot mix with each other. To diagonalize
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3

II. THE COMPLEX TRIPLET HIGGS MODEL

In this section, we will discuss setup of the triplet model and various model constraints. We will also discuss key
features of the model in Sec. II C and close this section by illustrating how neutrino masses are generated through a
Type-II seesaw mechanism and by discussing current constraints on the neutrino masses.

A. Model setup

The type-II seesaw model contains the SM Higgs doublet � with hypercharge Y� = 1 and the complex triplet Higgs
field � with hypercharge Y� = 2 [8] written in a matrix form [5, 6, 9, 10]

� =


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+
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(� + v� + i⌘) �

�
+

p
2

#
, (1)

where v� denotes the doublet vev satisfying
p

v
2

�
+ v

2

�
⌘ v ⇡ 246GeV, which is the scale of electroweak spontaneous

symmetry breaking (EWSB). And as will be discussed below, v� will be strongly constrained by the ⇢ parameter.
This scalar extension extension of the SM is also know as the complex triplet Higgs model (CTHM).

The kinetic Lagrangian is

Lkin = (Dµ�)
†
(D

µ
�) + Tr[(Dµ�)

†
(D

µ
�)], (2)

with the covariant derivatives

Dµ� =
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µ
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g
0
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2
Bµ�, (3)

where g
0 and g are the U(1)Y and SU(2)L gauge couplings, respectively. The second term in Dµ� introduces new

interactions between the electroweak gauge bosons and the triplet, which contributes to the masses of the former
when the triplet gets a nonzero vev.

We write the general CTHM potential as

V (�,�) = �m
2
�

†
�+M

2
Tr(�

†
�) +

⇥
µ�

T
i⌧2�

†
�+ h.c.

⇤
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†
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2
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+ �3Tr[�
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��

†
�] + �4(�
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where m and M are the mass parameters and �i (i=1,. . ., 5) are the dimensionless quartic scalar couplings, which are
all real due to hermiticity of the Lagrangian. The µ parameter, however, is in general complex and, thus, a possible
source of CP violation (CPV). But as discussed in Ref. [129, 130], the CPV phase from µ is in fact unphysical and
can always be absorbed by a redefinition of the triplet field.

After EWSB, the minimization conditions

@V
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= 0,
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= 0 (5)

imply that
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2
, (7)

with

�ij ⌘ �i + �j . (8)

We will use the same notation below.
The scalar states are, in general, mixtures of the field components that carry the same electric charge: (', �, �, ⌘);

('±, �±); and H
±±, which is already in its mass eigenstate. The absence of a CPV phase in the potential implies

that the real and imaginary parts of the neutral doublet and triplet fields cannot mix with each other. To diagonalize

•  How to discover Δ scalars ? 

•  How to determine potential parameters ? 



37 

Minimal Type II Potential 

3

II. THE COMPLEX TRIPLET HIGGS MODEL

In this section, we will discuss setup of the triplet model and various model constraints. We will also discuss key
features of the model in Sec. II C and close this section by illustrating how neutrino masses are generated through a
Type-II seesaw mechanism and by discussing current constraints on the neutrino masses.

A. Model setup

The type-II seesaw model contains the SM Higgs doublet � with hypercharge Y� = 1 and the complex triplet Higgs
field � with hypercharge Y� = 2 [8] written in a matrix form [5, 6, 9, 10]
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where v� denotes the doublet vev satisfying
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⌘ v ⇡ 246GeV, which is the scale of electroweak spontaneous

symmetry breaking (EWSB). And as will be discussed below, v� will be strongly constrained by the ⇢ parameter.
This scalar extension extension of the SM is also know as the complex triplet Higgs model (CTHM).

The kinetic Lagrangian is
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where g
0 and g are the U(1)Y and SU(2)L gauge couplings, respectively. The second term in Dµ� introduces new

interactions between the electroweak gauge bosons and the triplet, which contributes to the masses of the former
when the triplet gets a nonzero vev.

We write the general CTHM potential as
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where m and M are the mass parameters and �i (i=1,. . ., 5) are the dimensionless quartic scalar couplings, which are
all real due to hermiticity of the Lagrangian. The µ parameter, however, is in general complex and, thus, a possible
source of CP violation (CPV). But as discussed in Ref. [129, 130], the CPV phase from µ is in fact unphysical and
can always be absorbed by a redefinition of the triplet field.

After EWSB, the minimization conditions
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We will use the same notation below.
The scalar states are, in general, mixtures of the field components that carry the same electric charge: (', �, �, ⌘);

('±, �±); and H
±±, which is already in its mass eigenstate. The absence of a CPV phase in the potential implies

that the real and imaginary parts of the neutral doublet and triplet fields cannot mix with each other. To diagonalize

•  How to discover Δ scalars ? 

•  How to determine potential parameters ? 

Parameter  Significance Probe 

 µ  Type II mν  Neutrino mass 

 λ5  Δ mass spectrum Δ mass splittings 
 λ4  Higgs portal H+ decays 

 λ2,3  Δ self interaction Challenging  
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Discovery 

Production   Decay mode + final state Regime 

 H++H--   l+l+l-l- Small vΔ  

 H++H++  W+W+W-W- ! l+l+l-l- + MET Large vΔ  

 H++H-  l+l+hW- ! l+l+ bb l- + MET Intermediate vΔ  

 H++H-  W+W+hW- ! l+l+ bb l- + MET Intermediate vΔ  
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Discovery  
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Discovery  

This study 



41 

Discovery  

This study 

This study 
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Discovery  
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3

II. THE COMPLEX TRIPLET HIGGS MODEL

In this section, we will discuss setup of the triplet model and various model constraints. We will also discuss key
features of the model in Sec. II C and close this section by illustrating how neutrino masses are generated through a
Type-II seesaw mechanism and by discussing current constraints on the neutrino masses.

A. Model setup

The type-II seesaw model contains the SM Higgs doublet � with hypercharge Y� = 1 and the complex triplet Higgs
field � with hypercharge Y� = 2 [8] written in a matrix form [5, 6, 9, 10]
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where v� denotes the doublet vev satisfying
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⌘ v ⇡ 246GeV, which is the scale of electroweak spontaneous

symmetry breaking (EWSB). And as will be discussed below, v� will be strongly constrained by the ⇢ parameter.
This scalar extension extension of the SM is also know as the complex triplet Higgs model (CTHM).

The kinetic Lagrangian is
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where g
0 and g are the U(1)Y and SU(2)L gauge couplings, respectively. The second term in Dµ� introduces new

interactions between the electroweak gauge bosons and the triplet, which contributes to the masses of the former
when the triplet gets a nonzero vev.

We write the general CTHM potential as
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where m and M are the mass parameters and �i (i=1,. . ., 5) are the dimensionless quartic scalar couplings, which are
all real due to hermiticity of the Lagrangian. The µ parameter, however, is in general complex and, thus, a possible
source of CP violation (CPV). But as discussed in Ref. [129, 130], the CPV phase from µ is in fact unphysical and
can always be absorbed by a redefinition of the triplet field.

After EWSB, the minimization conditions
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with

�ij ⌘ �i + �j . (8)

We will use the same notation below.
The scalar states are, in general, mixtures of the field components that carry the same electric charge: (', �, �, ⌘);

('±, �±); and H
±±, which is already in its mass eigenstate. The absence of a CPV phase in the potential implies

that the real and imaginary parts of the neutral doublet and triplet fields cannot mix with each other. To diagonalize
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Here G
0 and G

± are the would-be Goldstone bosons that become the longitudinal components of the Z and W
±.

Among the remaining scalars, A is the pseudoscalar; h is the CP-even Higgs, which is recognized as the SM Higgs
particle; H is the other CP-even Higgs particle with a heavier mass compared with h; and H

± and H
±± are the

singly- and doubly-charged Higgs particles respectively.
It is useful to express the corresponding mass eigenvalues in terms of the parameters in the potential, vevs, and

mixing angles:
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As will be discussed below, experimental constraints on the ⇢ parameter require v� ⌧ v�, which in turn results in
a small sin↵ in general as can be seen from Eq.(12). Taking the small v� and sin↵ limit, we see that, from the
mass expressions above, m� basically determines the mass scale of the CTHM. We will discuss this in more detail in
Sec. III A.

Since we seek to gain information about the potential parameters from measurements of the scalar boson properties,
it is also useful to express the potential parameters in terms of the masses, vevs, and mixing angles:
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with t ⌘ ln(µ/mt). For perturbativity, we require a similar approximate condition on the quartic Higgs couplings
as in Ref. [141], which is based on the work of Ref. [142] i.e.,

�i(µ) . �FP/3, 8 mZ  µ  ⇤, (38)

where �FP ' 12 in the renormalization of Ref. [143] and ⇤ is the cutoff scale of the theory.

Fig. 1 gives constraints from VS (green region) and PU (orange region) at tree-level. The black dot corresponds to
our benchmark point discussed in Sec.VI A, i.e.,

�2 = 0.2 , �3 = �4 = 0 , �5 = �0.1 . (39)

After solving the above mentioned RGEs, one finds that that VS and perturbativity up to the Planck scale impose
stringent constraints on �i’s [21]. For our benchmark point as input at the scale µ = mt, the resulting running
couplings are shown in Fig. 1. From the right panel of Fig. 1, it is clear that the CTHM stays perturbative even at
the Planck scale. We also find that the potential develops a second minimum at O(10

5-106 GeV). The presence of
this second minimum implies that the SM vacuum may become either unstable or metastable above this scale. In
principle, stability could be preserved to higher scales with the presence of additional contributions to the RGEs
associated with particles heavier than this threshold. A detailed investigation of the possible U.V. embedding of the
CTHM goes beyond the scope of the present study. We observe, however, that the stability region for our benchmark
point lies well above the range of triplet scalar masses that we consider below. Moreover, one may also increase the
scale at which the potential may develop a second minimum by increasing �4 while preserving perturbativity, which
is indicated by the black arrow in the left panel of Fig. 1. We will discuss this point further in Sec. VD.

C. Key features of the CTHM

Since v� ⌧ v� due to the ⇢ parameter constraint, we expect, in general, tan 2↵ (and thus sin↵) to be small. In
this case, we have from from Eq. (12),
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Then in this small sin↵ limit, the expressions for the masses given in Eq. (13-17) can be simplified to
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We see that m� sets the overall mass scale of the triplet scalars whereas �1 is basically determined by mh and v.
Moreover, in the large m� limit, the mass splitting is

�m = |mH±± �mH± | ⇡ |mH± �mH,A| ⇡
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2
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which depends only on �5, m�, and v. Thus, by measuring the masses of any two triplet scalars of differing charges,
one could determine both m� and the Higgs portal coupling �5. A practical corollary is in the large m� limit, once
one of the triplet Higgs particles is discovered, the relatively small mass splitting (compared to m�) would provide
guidance as to the mass region for discovery of the other triplet Higgs scalars.
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II. THE COMPLEX TRIPLET HIGGS MODEL

In this section, we will discuss setup of the triplet model and various model constraints. We will also discuss key
features of the model in Sec. II C and close this section by illustrating how neutrino masses are generated through a
Type-II seesaw mechanism and by discussing current constraints on the neutrino masses.
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where g
0 and g are the U(1)Y and SU(2)L gauge couplings, respectively. The second term in Dµ� introduces new

interactions between the electroweak gauge bosons and the triplet, which contributes to the masses of the former
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where m and M are the mass parameters and �i (i=1,. . ., 5) are the dimensionless quartic scalar couplings, which are
all real due to hermiticity of the Lagrangian. The µ parameter, however, is in general complex and, thus, a possible
source of CP violation (CPV). But as discussed in Ref. [129, 130], the CPV phase from µ is in fact unphysical and
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Here G
0 and G

± are the would-be Goldstone bosons that become the longitudinal components of the Z and W
±.

Among the remaining scalars, A is the pseudoscalar; h is the CP-even Higgs, which is recognized as the SM Higgs
particle; H is the other CP-even Higgs particle with a heavier mass compared with h; and H

± and H
±± are the

singly- and doubly-charged Higgs particles respectively.
It is useful to express the corresponding mass eigenvalues in terms of the parameters in the potential, vevs, and
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As will be discussed below, experimental constraints on the ⇢ parameter require v� ⌧ v�, which in turn results in
a small sin↵ in general as can be seen from Eq.(12). Taking the small v� and sin↵ limit, we see that, from the
mass expressions above, m� basically determines the mass scale of the CTHM. We will discuss this in more detail in
Sec. III A.

Since we seek to gain information about the potential parameters from measurements of the scalar boson properties,
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with t ⌘ ln(µ/mt). For perturbativity, we require a similar approximate condition on the quartic Higgs couplings
as in Ref. [141], which is based on the work of Ref. [142] i.e.,

�i(µ) . �FP/3, 8 mZ  µ  ⇤, (38)

where �FP ' 12 in the renormalization of Ref. [143] and ⇤ is the cutoff scale of the theory.

Fig. 1 gives constraints from VS (green region) and PU (orange region) at tree-level. The black dot corresponds to
our benchmark point discussed in Sec.VI A, i.e.,

�2 = 0.2 , �3 = �4 = 0 , �5 = �0.1 . (39)

After solving the above mentioned RGEs, one finds that that VS and perturbativity up to the Planck scale impose
stringent constraints on �i’s [21]. For our benchmark point as input at the scale µ = mt, the resulting running
couplings are shown in Fig. 1. From the right panel of Fig. 1, it is clear that the CTHM stays perturbative even at
the Planck scale. We also find that the potential develops a second minimum at O(10

5-106 GeV). The presence of
this second minimum implies that the SM vacuum may become either unstable or metastable above this scale. In
principle, stability could be preserved to higher scales with the presence of additional contributions to the RGEs
associated with particles heavier than this threshold. A detailed investigation of the possible U.V. embedding of the
CTHM goes beyond the scope of the present study. We observe, however, that the stability region for our benchmark
point lies well above the range of triplet scalar masses that we consider below. Moreover, one may also increase the
scale at which the potential may develop a second minimum by increasing �4 while preserving perturbativity, which
is indicated by the black arrow in the left panel of Fig. 1. We will discuss this point further in Sec. VD.

C. Key features of the CTHM

Since v� ⌧ v� due to the ⇢ parameter constraint, we expect, in general, tan 2↵ (and thus sin↵) to be small. In
this case, we have from from Eq. (12),
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Then in this small sin↵ limit, the expressions for the masses given in Eq. (13-17) can be simplified to
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We see that m� sets the overall mass scale of the triplet scalars whereas �1 is basically determined by mh and v.
Moreover, in the large m� limit, the mass splitting is

�m = |mH±± �mH± | ⇡ |mH± �mH,A| ⇡
|�5|v

2

�

8m�

⇡
|�5|v

2
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which depends only on �5, m�, and v. Thus, by measuring the masses of any two triplet scalars of differing charges,
one could determine both m� and the Higgs portal coupling �5. A practical corollary is in the large m� limit, once
one of the triplet Higgs particles is discovered, the relatively small mass splitting (compared to m�) would provide
guidance as to the mass region for discovery of the other triplet Higgs scalars.

Triplet mass scale 
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FIG. 2: The dependence of sin↵ on �23 is negligible due to the smallness of v�, and �1 ⇡ m
2

h
/(2v

2
) ⇡ 0.129, such

that sin↵ is approximately a function of �45, m� and v�. On the left (right) panel we fix m� = 300GeV
(v� = 0.1GeV) and plot sin↵ with respect to �45 with different v�’s (m�’s). One observes that sin↵ becomes
sufficiently small for increasing m� and/or decreasing v�.

B. Measurement of the mixing angle sin↵ for determination of �4

To determine �4, we note that from Eq. (40), we can solve for ↵:
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which implies sin↵ is in general a two-to-one function. This feature of sin↵ is graphically reflected in Fig. 2. In
addition, from Fig. 2, we see that sin↵ indeed decreases with increasing m� and/or decreasing v�. For example,
when m� & 300GeV and/or v� . 0.1GeV, sin↵ . 0.01.

TABLE I: Three-point vertices related to the determination of �4,5. �5 is determined through mass splitting, �4 is
determined through the mixing angle sin↵, which is sensitive to �45.

Vertex Coupling

hAZ �
g

2 cos ✓W
(cos↵ sin�0 � 2 sin↵ cos�0)
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p
2 cos�± sin↵)

On the other hand, the variation of sin↵ with �45 can also be used to determine �45 through various gauge boson-
Higgs couplings. We focus on gauge boson-Higgs vertices as electroweak production of the triplet Higgs particles
is the dominant production mechanism in the CTHM. After a careful investigation of all the triple vertices listed
in Appendix D, we find that only four of the gauge boson-Higgs couplings are linearly dependent on sin↵.6 These
couplings will eventually affect the decay BRs of the BSM particles. Thus, after their discovery, one could determine
�5 from the mass splitting and �4 from the triplet Higgs decay BRs 7.

6 Some of the non gauge boson-Higgs type vertices are also sin↵ linearly dependent as can be seen from the hH
++

H
�� vertex in

AppendixD, but the corresponding production cross section is smaller compared with the dominant electroweak production.
7 Here we remind the reader that the Higgs portal parameters �4,5 are of particular interest as they may allow a SFOEWPT to explain
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which implies sin↵ is in general a two-to-one function. This feature of sin↵ is graphically reflected in Fig. 2. In
addition, from Fig. 2, we see that sin↵ indeed decreases with increasing m� and/or decreasing v�. For example,
when m� & 300GeV and/or v� . 0.1GeV, sin↵ . 0.01.
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On the other hand, the variation of sin↵ with �45 can also be used to determine �45 through various gauge boson-
Higgs couplings. We focus on gauge boson-Higgs vertices as electroweak production of the triplet Higgs particles
is the dominant production mechanism in the CTHM. After a careful investigation of all the triple vertices listed
in Appendix D, we find that only four of the gauge boson-Higgs couplings are linearly dependent on sin↵.6 These
couplings will eventually affect the decay BRs of the BSM particles. Thus, after their discovery, one could determine
�5 from the mass splitting and �4 from the triplet Higgs decay BRs 7.

6 Some of the non gauge boson-Higgs type vertices are also sin↵ linearly dependent as can be seen from the hH
++
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AppendixD, but the corresponding production cross section is smaller compared with the dominant electroweak production.
7 Here we remind the reader that the Higgs portal parameters �4,5 are of particular interest as they may allow a SFOEWPT to explain
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which implies sin↵ is in general a two-to-one function. This feature of sin↵ is graphically reflected in Fig. 2. In
addition, from Fig. 2, we see that sin↵ indeed decreases with increasing m� and/or decreasing v�. For example,
when m� & 300GeV and/or v� . 0.1GeV, sin↵ . 0.01.
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determined through the mixing angle sin↵, which is sensitive to �45.
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On the other hand, the variation of sin↵ with �45 can also be used to determine �45 through various gauge boson-
Higgs couplings. We focus on gauge boson-Higgs vertices as electroweak production of the triplet Higgs particles
is the dominant production mechanism in the CTHM. After a careful investigation of all the triple vertices listed
in Appendix D, we find that only four of the gauge boson-Higgs couplings are linearly dependent on sin↵.6 These
couplings will eventually affect the decay BRs of the BSM particles. Thus, after their discovery, one could determine
�5 from the mass splitting and �4 from the triplet Higgs decay BRs 7.

6 Some of the non gauge boson-Higgs type vertices are also sin↵ linearly dependent as can be seen from the hH
++

H
�� vertex in

AppendixD, but the corresponding production cross section is smaller compared with the dominant electroweak production.
7 Here we remind the reader that the Higgs portal parameters �4,5 are of particular interest as they may allow a SFOEWPT to explain

Production   Decay mode + final state Regime 

 H++H-   l+l+hW- ! l+l+ bb l- + MET Intermediate vΔ  

 H++H-  W+W+hW- ! l+l+ bb l- + MET Intermediate vΔ  
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W+W+hW-   l+l+hW-   h ! γγ

FCC-ee

FCC+hh
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V. Outlook 
•  Uncovering the origin of mν is a key open problem in 

particle physics and one for which a variety of 
experimental probes are needed 

•  For mν dynamics at the TeV scale or below, hadron 
colliders could provide unique tests of the see saw 
mechanism 

•  The tri-lepton channel can be used to probe the heavy-
light neutrino mixing angle, and a comparison of HL/HE-
LHC and 100 TeV pp collider searches could distinguish 
the minimal LRSM scenario from other see saw 
mechanisms 

•  A 100 TeV pp collider could significantly extend the 
discovery reach for scalars associated with the type II 
scenario and probe a variety of scalar sector couplings 

•  There exist many opportunities for additional studies  ! 
others are encouraged to get involved! 
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Heavy-Light Neutrino Mixing 

where the parameter tan 2� sin↵ . 2mb/mt [33,34], � ⌘ v2/v1, mb and mt are the bottom and
top quark masses respectively. Therefore, up to small terms of the order O

⇣
M̂l tan 2� sin↵

⌘
,

the heavy light mixing matrices are roughly the same for both parity and charge conjugation as
the LR symmetry.

Heavy-light mixing in the mLRSM: in the mLRSM, the heavy-light neutrino mixing de-
pends on the light and the heavy neutrino mass matrices. It is known [15] that this mixing enters
in the decay of the heavy neutrino into a left-handed charged lepton and two jets [14], and one
could measure the mixing by measuring the chirality [19] of the outgoing charged lepton in
order to discriminate this channel from the usual channel where the heavy neutrino decays into
a right-handed charged leptons and two jets1. Instead, in this work we point out that the same
mixing enters in the purely leptonic decay of the heavy neutrinos. This channel has an advan-
tage with respect to the channel with two leptons and two jets, since no asymmetry (chirality
information) needs to be measured in order to obtain the heavy-light mixing matrix elements.
In addition, from the experimental perspective, the backgrounds relevant to the purely leptonic
channel are cleaner. This channel has been previously studied in Refs. [20, 35] including both
prompt and displaced vertex for the signal in the context of the SM extended by a fermion sin-
glet. In the latter instance, no heavy resonance WR is produced in the process, which makes
kinematics for the final states very different with respect to the present work.

In what follows and for the sake of illustration, we consider C as the LR symmetry but the
same conclusions hold for the case when the LR symmetry corresponds to P . From Eq. (7) it
follows that the Dirac mass term is symmetric and Eq. (12) takes the form [15]

M⌫ ' Y�LvLe
i✓L �M⇤

D

1

MN
M⇤

D. (23)

Multipling from the left by M�1
N one gets [36]

M�1
N M⌫ ' M�1

N Y�LvLe
i✓L �

1

MN
M⇤

D

1

MN
M⇤

D, (24)

M�1
N M⌫ ' M�1

N ML �⇥2. (25)

Hence, the mixing angle can be written in terms of the heavy and light neutrino masses as [36]

⇥ =
q
✏�M�1

N M⌫ = M⇤
DM

�1
N , (26)

with ✏ ⌘ vL/vR. See Ref. [16] for the determination of the analogue of Eq. (26) for Parity as the
LR symmetry. In what follows and for the sake of simplifying the discussion, we set vL = 0,

1The relative strength of these two channels can be seen for instance from the ”phase diagram” of the heavy-
light mixing in the see-saw models in Ref. [29], and it is pointed out that without special Yukawa texture the
ordinary channel with heavy neutrino decay with right-handed charged current is generally much larger than the
left-handed current.
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where the heavy-light neutrino mixing is given by

⇥ ' M⇤
DM

�1
N . (15)

Finally, the charged lepton mass matrix is given by

Ml = Y�v2ei↵ + Ỹ�v1. (16)

As usual, the mass matrices can be diagonalized by the bi-unitary transformations

Ml = UlLM̂lU
†
lR,

M⌫ = U⇤
⌫ M̂⌫U †

⌫ , MN = U⇤
NM̂NU

†
N , (17)

where M̂l, M̂⌫ and M̂N are diagonal matrices with real, positive eigenvalues.
Charged gauge interactions with leptons: from the covariant derivative and in the mass

eigenstates basis, the charged current Lagrangian is

Lcc =
g
p
2
(l̄LVL /WL⌫L � l̄L⇥L /WLN

c
L + l̄RVR /WRNR + l̄R⇥R /WR⌫

c
R) + h.c., (18)

where NR ⌘ C(N̄ c
L)

T = i�2�0(N c
L)

⇤, ⌫c
R ⌘ C(⌫̄L)T and �0 and �2 are the gamma matrices and

the mixing matrices VL, VR, ⇥L and ⇥R are given by

VL = U †
lLU⌫ , ⇥L = U †

lL⇥UN (19)
VR = U †

lRU
⇤
N , ⇥R = U †

lR⇥
†U⇤

⌫ (20)

We may use the freedom of rephasing the charged lepton fields to remove three unphysical
phases from VL, which ends up having 3 mixing angles and 3 phases, namely one Dirac and two
Majorana phases. Since the freedom of rephasing the charged lepton is already used for VL, its
right-handed analog –the leptonic mixing matrix VR– is a general 3⇥ 3 unitary matrix and may
be therefore parametrized by 3 mixing angles and 6 phases.

A comment regarding the mixing matrices ⇥L and ⇥R is in order: for charge conjugation as
the LR symmetry, without loss of generality one can choose UlL = UlR = 1, such that VL = U⌫

and VR = U⇤
N . In this case, the mixing matrices can be written in the form

⇥L = ⇥V ⇤
R, ⇥R = ⇥V ⇤

L . (21)

For Parity as the LR symmetry, it is no longer true that one can assume UlL = UlR = 1.
Nevertheless, since the Dirac mass matrix is hermitian with a very good approximation, even in
this case one can write

⇥L = ⇥V ⇤
R

h
1 +O

⇣
M̂l tan 2� sin↵

⌘i
, ⇥R = ⇥V ⇤

L

h
1 +O

⇣
M̂l tan 2� sin↵

⌘i
. (22)
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Minimal Model 

Non-Minimal Model 

The mixing matrix V that relates the neutral mass eigenstates N 0and the interaction eigen-
states N via N = V N

0 can be expressed in the seesaw approximation as [42]:

V '

0

@
VL i⇥L ⇥L

0 �
i
2V

⇤
R

1
2V

⇤
R

�
p
2UR⇥

†
LVL

ip
2
UR

1p
2
UR

1

A , (34)

where the physical mixing between the heavy and light neutrinos is ⇥L = 1p
2
M †

DVRM̂
�1
N . 3

3 Collider sensitivities

As discussed in the previous section, the most promising channel for the determination of the
Dirac Yukawa coupling of neutrinos is the purely leptonic channel pp ! W±

R ! l±l±l⌥⌫.
For purposes of illustration, we focus on the process pp ! e+N ! e+µ�e+⌫ (see Fig. 1)
rather than pp ! µ+N ! µ+e�e+⌫ in order to avoid the presence of an e+e� pair in the final
state. The final state with different flavors for leptons of the same charge has a cleaner Standard
Model background and also avoids events coming from the heavy neutrino decaying through
the neutral currents (for example pp ! W+

R ! e+N ! e+⌫Z⇤
(R) ! e+e+e�⌫).

We study the main sources of background for the process pp ! e+N ! e+µ�e+⌫ for
different center of mass energies. In what follows, we discuss the LHC expected sensitivity to
the branching ratio of HNs decaying into leptons at the LHC with

p
s = 13 TeV, the high energy

LHC (HE-LHC) with
p
s = 28 TeV and a pp collider with

p
s = 100 TeV. We compare our

cross section results with those obtained in Refs. [15, 16, 44, 45] for the pp ! e+N production
and find agreement.

Assuming that the neutrinos in the final state cannot be distinguished, the decay width of
heavy neutrinos into three leptons �(N ! l±l0⌥⌫) is proportional to the heavy-light mixing and
it is of the form

�
�
N ! l±l0⌥⌫

�
=

�
|(⇥L)lN |

2 + |(⇥L)l0N |
2
� G2

F

96⇡4mN

Z m2
N

0

dx
⇡(m2

N � x)(m4
N + xm2

N � 2x2)

m2
N(1�

x
M2

W
)2

.

(35)
Where mN denotes the mass of the heavy neutrino.4 For illustration we assume VL = V ⇤

R

and the indicative upper limit on light neutrino masses
P

⌫ m⌫ = 0.5 eV [46]. In Figure 2
we show the branching ratio of the heavy neutrino N into e+µ�⌫ as a function of the lightest
heavy neutrino (HN) mass in the minimal left-right symmetric model. As can be seen from
the figure, the branching ratio into leptons decreases as the heavy neutrino mass mN increases.

3The expressions of the couplings of the heavy neutrinos to the gauge bosons are given in [42].
4In the inverse seesaw scenario, mN denotes collectively the pair of mass eigenvalues mN± for N = N±.
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Figure 10: Value for the heavy-light mixing angle combination |⇥Nµ|
2 + |⇥Ne|

2 (right) and
the Dirac Mass MD (left) as a function of the heavy neutrino mass, for MWR = 6 TeV for a 2�
exclusion region shown in Fig. 9. We assume VL = V ⇤

R and the upper limit on light neutrino
masses of m⌫ = 0.5 eV [46].

Therefore and for the mLRSM, it is interesting to compare the exclusion lines obtained
in Fig. 9 with the prediction one can make in this case. In Fig. 10 (left panel) we plot the
combination |(⇥L)Nµ|

2+ |(⇥L)Ne|
2 given by Eq. (15), as a function of mN together with the 2�

and 5� significance regions expected at the 100 TeV pp collider. We see that at the 100 TeV pp

collider, the heavy-light mixing ⇥ can be probed for values as small as |(⇥L)Nµ|
2+|(⇥L)Ne|

2
⇠

10�12. Notice that since |(⇥L)Nµ|
2 + |(⇥L)Ne|

2
⇠ 10�12 is the sum of two positive terms one

can safely assume that each |(⇥L)Nµ|
2 and |(⇥L)Ne|

2
⇠ 10�12 are individually smaller than

10�12.
In what follows, we discuss how the above estimates translate to the sensitivity for the

Dirac mass matrix elements (MD)eN and (MD)µN at the 100 TeV pp collider. To this end, it is
instructive to show the relation between the Dirac mass matrix MD and the heavy, light neutrino
mass matrices when |(VL)i,j| = |(VR)i,j|, since in this case the relation is simple enough to be
written in a compact analytic form for both C and P cases. From Eq (26) and for C as the LR
symmetry, the Dirac mass matrix MD can be written as [15],

MD = V ⇤
LM̂N

s
vL
vR

�
M̂⌫

M̂N

V †
L . (39)

Notice that this connection is lost for the non-minimal models, as can be explicitly seen in
Eq. (33), since in this case there is an orthogonal, complex matrix R which makes the Dirac
mass arbitrary.

The same considerations apply also for P as the LR symmetry where the Dirac mass matrix
can be written as [16]

MD = VLM̂N

s
vL
vR

�
M̂⌫

M̂N

V †
L (40)

21

where MD, MN , and µ denote 3⇥ 3 matrices and the sub-matrix µ is taken to be diagonal. As-
suming the sub-matrices MD, MN , µ have mass scales arranged hierarchically, MN � MD, µ,
the light neutrino mass matrix M⌫ can be expressed in terms of the matrices in Eq. (27) as

M⌫ ' MT
D

1

MT
N

µ
1

MN
MD. (28)

Using the bi-unitary transformations

M⌫ = V ⇤
Lm⌫V

†
L , MN = VRM̂NU

†
R, (29)

the mass matrix M can be diagonalized into

M̂ =

0

@
m⌫ 0 0
0 M̂�

N 0
0 0 M̂+

N

1

A . (30)

Here M̂�
N , M̂

+
N and M̂N are diagonal mass matrices with M̂±

N = M̂N ±
1
2µ

V and µV =

V T
R µV T

R . The neutral mass eigenstates N 0 = (⌫, N�, N+)T correspond to three light neutrinos
and three pairs of almost degenerate heavy neutrinos with mass eigenvalues mN±

i
= (M̂±

N )ii =

(M̂N)ii ±
1
2(µ

V )ii. 2

Using Eqs (28), (29) the light neutrino mass matrix can be written as

m⌫ = V T
L MT

D

1

MT
N

µ
1

MN
MDVL. (31)

Following the parameterization developed by Casas and Ibarra [17] we can now write MD as:

MD = MN
1
p
µ̂
R
p
m⌫V

†
L . (32)

Here the matrix R is an arbitrary complex orthogonal matrix. Rewriting MN using Eq. (28) we
obtain:

V †
RMD = M̂NU

†
R

1
p
µ̂
R
p
m⌫V

†
L , (33)

which express V †
RMD in terms of the low energy observables m⌫ , VL allowing us to reproduce

the neutrino data. Notice that in practice, the arbitrariness of the matrix R is a consequence
of the fact that for the non-minimal models, the Dirac mass matrix is arbitrary. This feature
precludes a direct mapping of neutrino data onto MD in non-minimal models.

2Here the three pairs of – almost degenerate – neutrinos correspond to the so-called ”quasi-Dirac” neutrinos
[42, 43].
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 ttZ, ttW, tt (j), WZ (j), 3W, Z/γ (j) 

 Cuts 
Cut description

e+e+µ�, no b jets and no additional leptons signal selection
pleadT,e+ > 200 GeV, psubT,e+ > 100 GeV, pleadT,µ� > 100 GeV reduce all backgrounds

/ET > 100 GeV reduce mostly tt(j) and Z/�(j)
|minv(e+e+)� 91.2|) > 10 GeV reduce mostly WZ(j)

mT (e
+
sub

/ET ) < 150 GeV select channel shown in Fig. 1 (right)
mT (e+e+µ� /ET ) > MWR/2 reduce all backgrounds

Table 1: Selection criteria used to reduced the SM background for 100 TeV. For 13 TeV and 28
TeV we apply the same cuts, excepting that P lead

T,e+ > 100 GeV.

j in the parenthesis means that we generated the corresponding background with one matched
jet. Tables 2, 3 and 4 show the cut flow (see below) for the main sources of background for
this process, together with two signal benchmark points, for 13 TeV, 28 TeV and 100 TeV re-
spectively. As already remarked, we assume the left and right leptonic mixing matrix to satisfy
VL = V ⇤

R . Some of the backgrounds for this process were studied in Ref. [21]. In our anal-
ysis, further sources of backgrounds are included mostly due to the charge misidentification
probability that becomes more important at higher pT . We compare our WZ and triple boson
(WWW ) backgrounds with the CMS estimates from Ref. [21]. In particular, we compare with
the second last bin in the left panel of Figure A.3 from Ref. [21], which turns out to be closer to
the kinematic region in our analysis, and find an agreement for WZ and about half of the yield
for the WWW background. This difference is consistent with the 50% uncertainty quoted for
the estimate for triboson production.

A description of the selection criteria is shown in Table 1. We first demand that each event
contains exactly two positrons, one muon, and no b-tagged jets. Events with extra jets that are
not b-tagged are retained. Secondly, we select events with high transverse momentum pT for
the leptons and large missing transverse energy /ET in order to reduce many of the backgrounds.
Then we require the reconstructed invariant mass of the positron pair minv(e+e+) to be outside
the Z boson mass peak, reducing the background coming from Z ! e+e� when the electron
charge is misidentified.

The next cut in Table 1 is on the transverse mass of the positron and missing energy
mT (e

+
sub /ET ). We enforce the reconstructed transverse mass of the sub-leading positron and

missing energy to be less than 150 GeV. In principle, if the momentum of the leptons are ex-
actly reconstructed, then mT (e

+
sub /ET ) will not exceed the mass of the W boson. However, due

to smearing effects, the distribution of this transverse mass is broadened. This is why we choose
the cut on this variable to be larger than the W boson mass. In Fig. 3 we show the mT (e

+
sub /ET )

distribution for different masses of the heavy neutrino N1 and MWR = 6 TeV for a 100 TeV
pp-collider. One can observe from these distributions that imposing a cut on this transverse

13
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Figure 3: The distribution of the transverse mass of the subleading positron and missing ET
at 100 TeV pp-collider with benchmark point MWR = 6 TeV, mN2 = 2 TeV, mN3 = 2.5 TeV.
Different colors represents different masses of mN1 , the solid and dashed curves represent the
events coming from the left and right diagram in Fig. 1 respectively.

mass can effectively discriminate the two diagrams in Fig. 1 if the mass of the N1 is sufficiently
large. As noted earlier, this discrimination can be achieved because the positron from the heavy
neutrino decay comes mostly from an on-shell W boson decay in the process in Eq. (37). The
signal efficiencies are different for the two processes in Fig. 1. In Fig. 4 we show the signal ef-
ficiency for each channel individually as well as the averaged efficiencies with different relative
strength of the two channels characterized by the parameter r defined below:

r ⌘
Br(N1 ! e+(W�

! µ�⌫̄µ))

Br(N1 ! µ�(W+ ! e+⌫e))
. (38)

As one can see from the left plot in Fig. 4, the efficiency of the channel shown in Eq. (37)
decreases as the mass of the N1 increases. This is mainly due to the cut mT (e

+
sub

/ET ) < 150 GeV
shown in Table 1, which helps to discriminate between the two channels shown in Eqs. (36) and
(37).

The last selection in Tab. 1 is a cut on the transverse mass of the e+e+µ� /ET system, since
for an on-shell WR boson, the transverse mass distribution is peaked at MWR (see Fig. 5),
where the SM backgrounds give a negligible contribution. The rejection of the backgrounds
was effectively achieved by using the cut mT (e+e+µ� /ET ) > MWR/2 shown in Table 1. In
this way, most of the signal events are kept while a significant portion of the backgrounds is
rejected. Furthermore, this cut also guarantees that the SM backgrounds become even more
suppressed when searching for a WR boson with higher mass.

For the charge flip probability, we take the current ATLAS performance in Ref. [54], which
parameterizes the flip probability P as the product of functions of ⌘ and PT : P = f(⌘)⇥ �(PT ).
Also we assume that �(PT ) for PT > 400 GeV keeps the same value as that in the bin (200,400)
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Cut description
e+e+µ�, no b jets and no additional leptons signal selection

pleadT,e+ > 200 GeV, psubT,e+ > 100 GeV, pleadT,µ� > 100 GeV reduce all backgrounds
/ET > 100 GeV reduce mostly tt(j) and Z/�(j)

|minv(e+e+)� 91.2|) > 10 GeV reduce mostly WZ(j)
mT (e

+
sub

/ET ) < 150 GeV select channel shown in Fig. 1 (right)
mT (e+e+µ� /ET ) > MWR/2 reduce all backgrounds

Table 1: Selection criteria used to reduced the SM background for 100 TeV. For 13 TeV and 28
TeV we apply the same cuts, excepting that P lead

T,e+ > 100 GeV.

j in the parenthesis means that we generated the corresponding background with one matched
jet. Tables 2, 3 and 4 show the cut flow (see below) for the main sources of background for
this process, together with two signal benchmark points, for 13 TeV, 28 TeV and 100 TeV re-
spectively. As already remarked, we assume the left and right leptonic mixing matrix to satisfy
VL = V ⇤

R . Some of the backgrounds for this process were studied in Ref. [21]. In our anal-
ysis, further sources of backgrounds are included mostly due to the charge misidentification
probability that becomes more important at higher pT . We compare our WZ and triple boson
(WWW ) backgrounds with the CMS estimates from Ref. [21]. In particular, we compare with
the second last bin in the left panel of Figure A.3 from Ref. [21], which turns out to be closer to
the kinematic region in our analysis, and find an agreement for WZ and about half of the yield
for the WWW background. This difference is consistent with the 50% uncertainty quoted for
the estimate for triboson production.

A description of the selection criteria is shown in Table 1. We first demand that each event
contains exactly two positrons, one muon, and no b-tagged jets. Events with extra jets that are
not b-tagged are retained. Secondly, we select events with high transverse momentum pT for
the leptons and large missing transverse energy /ET in order to reduce many of the backgrounds.
Then we require the reconstructed invariant mass of the positron pair minv(e+e+) to be outside
the Z boson mass peak, reducing the background coming from Z ! e+e� when the electron
charge is misidentified.

The next cut in Table 1 is on the transverse mass of the positron and missing energy
mT (e

+
sub /ET ). We enforce the reconstructed transverse mass of the sub-leading positron and

missing energy to be less than 150 GeV. In principle, if the momentum of the leptons are ex-
actly reconstructed, then mT (e

+
sub /ET ) will not exceed the mass of the W boson. However, due

to smearing effects, the distribution of this transverse mass is broadened. This is why we choose
the cut on this variable to be larger than the W boson mass. In Fig. 3 we show the mT (e

+
sub /ET )

distribution for different masses of the heavy neutrino N1 and MWR = 6 TeV for a 100 TeV
pp-collider. One can observe from these distributions that imposing a cut on this transverse

13

100 TeV pp 



56 

Analysis: Cuts 

Figure 4: The signal efficiencies for the benchmark point: mN2 = 2 TeV, mN3 = 2.5 TeV.
The left plot shows the signal efficiencies for each channel with different mass of WR and N1.
The right plot shows the signal efficiencies for different relative strengths r of the two channels
(defined in Eq. 38), with MWR = 6 TeV.
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Figure 5: The distribution of the reconstructed transverse mass of WR at a 100 TeV pp-collider,
with benchmark point mWN = 300 GeV, mN2 = 2 TeV, mN3 = 2.5 TeV. Different colors
represents different masses of WR.
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Cut description
e+e+µ�, no b jets and no additional leptons signal selection

pleadT,e+ > 200 GeV, psubT,e+ > 100 GeV, pleadT,µ� > 100 GeV reduce all backgrounds
/ET > 100 GeV reduce mostly tt(j) and Z/�(j)

|minv(e+e+)� 91.2|) > 10 GeV reduce mostly WZ(j)
mT (e

+
sub

/ET ) < 150 GeV select channel shown in Fig. 1 (right)
mT (e+e+µ� /ET ) > MWR/2 reduce all backgrounds

Table 1: Selection criteria used to reduced the SM background for 100 TeV. For 13 TeV and 28
TeV we apply the same cuts, excepting that P lead

T,e+ > 100 GeV.

j in the parenthesis means that we generated the corresponding background with one matched
jet. Tables 2, 3 and 4 show the cut flow (see below) for the main sources of background for
this process, together with two signal benchmark points, for 13 TeV, 28 TeV and 100 TeV re-
spectively. As already remarked, we assume the left and right leptonic mixing matrix to satisfy
VL = V ⇤

R . Some of the backgrounds for this process were studied in Ref. [21]. In our anal-
ysis, further sources of backgrounds are included mostly due to the charge misidentification
probability that becomes more important at higher pT . We compare our WZ and triple boson
(WWW ) backgrounds with the CMS estimates from Ref. [21]. In particular, we compare with
the second last bin in the left panel of Figure A.3 from Ref. [21], which turns out to be closer to
the kinematic region in our analysis, and find an agreement for WZ and about half of the yield
for the WWW background. This difference is consistent with the 50% uncertainty quoted for
the estimate for triboson production.

A description of the selection criteria is shown in Table 1. We first demand that each event
contains exactly two positrons, one muon, and no b-tagged jets. Events with extra jets that are
not b-tagged are retained. Secondly, we select events with high transverse momentum pT for
the leptons and large missing transverse energy /ET in order to reduce many of the backgrounds.
Then we require the reconstructed invariant mass of the positron pair minv(e+e+) to be outside
the Z boson mass peak, reducing the background coming from Z ! e+e� when the electron
charge is misidentified.

The next cut in Table 1 is on the transverse mass of the positron and missing energy
mT (e

+
sub /ET ). We enforce the reconstructed transverse mass of the sub-leading positron and

missing energy to be less than 150 GeV. In principle, if the momentum of the leptons are ex-
actly reconstructed, then mT (e

+
sub /ET ) will not exceed the mass of the W boson. However, due

to smearing effects, the distribution of this transverse mass is broadened. This is why we choose
the cut on this variable to be larger than the W boson mass. In Fig. 3 we show the mT (e

+
sub /ET )

distribution for different masses of the heavy neutrino N1 and MWR = 6 TeV for a 100 TeV
pp-collider. One can observe from these distributions that imposing a cut on this transverse
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Figure 7: LHC reach to the branching ratio of the purely leptonic decays of the heavy neutrino.
The blue (green) line denotes the branching ratio within the minimal (non-minimal) LR model
and the shadowed thick(dashed) regions show the reach at 5�(2�), for an integrated luminosity
of Lint = 3ab�1 and center of mass energy

p
s = 13 TeV. We assume VL = V ⇤

R and the upper
limit on light neutrino masses of m⌫ = 0.5 eV [46]. For the non-minimal model we have set
R = UR = I and µ = 10�4 GeV.

Backgrounds Signal
p
s =13TeV ttZ ttW tt(j) WZ(j) 3W Z/�(j)mN(100 GeV) mN(500 GeV)

e+e+µ� (b-veto) 11.8 74.9 23058 24.8 6.71 901 1293 371
PT cuts 0.325 3.75 216 0.215 2.33 5.31 825 253
/ET GeV 0.158 1.85 117 0.0761 1.06 0.0911 646 188

minv(e+ e+) 0.155 1.82 113 0.0761 1.05 0 646 188
mT (e

+
sub

/ET ) 0.0582 0.743 48.4 0.0277 0.491 0 622 176
mT (e+e+µ� /ET ) 0 7.82⇥ 10�3 0 0 0.0169 0 597 158

Table 2: SM background processes at 13 TeV and 3 ab�1 for the trilepton signal e+e+µ�⌫ and
MWR = 4 TeV, for two benchmark values of the heavy neutrino masses assuming (⇥L)µN =
(⇥)eN = 1p

2
. Backgrounds ending with (j) were simulated with one matched jet. The charge

misidentification probability has been taken from current ATLAS result from Ref. [54].
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Figure 3: The distribution of the transverse mass of the subleading positron and missing ET
at 100 TeV pp-collider with benchmark point MWR = 6 TeV, mN2 = 2 TeV, mN3 = 2.5 TeV.
Different colors represents different masses of mN1 , the solid and dashed curves represent the
events coming from the left and right diagram in Fig. 1 respectively.

mass can effectively discriminate the two diagrams in Fig. 1 if the mass of the N1 is sufficiently
large. As noted earlier, this discrimination can be achieved because the positron from the heavy
neutrino decay comes mostly from an on-shell W boson decay in the process in Eq. (37). The
signal efficiencies are different for the two processes in Fig. 1. In Fig. 4 we show the signal ef-
ficiency for each channel individually as well as the averaged efficiencies with different relative
strength of the two channels characterized by the parameter r defined below:

r ⌘
Br(N1 ! e+(W�

! µ�⌫̄µ))

Br(N1 ! µ�(W+ ! e+⌫e))
. (38)

As one can see from the left plot in Fig. 4, the efficiency of the channel shown in Eq. (37)
decreases as the mass of the N1 increases. This is mainly due to the cut mT (e

+
sub

/ET ) < 150 GeV
shown in Table 1, which helps to discriminate between the two channels shown in Eqs. (36) and
(37).

The last selection in Tab. 1 is a cut on the transverse mass of the e+e+µ� /ET system, since
for an on-shell WR boson, the transverse mass distribution is peaked at MWR (see Fig. 5),
where the SM backgrounds give a negligible contribution. The rejection of the backgrounds
was effectively achieved by using the cut mT (e+e+µ� /ET ) > MWR/2 shown in Table 1. In
this way, most of the signal events are kept while a significant portion of the backgrounds is
rejected. Furthermore, this cut also guarantees that the SM backgrounds become even more
suppressed when searching for a WR boson with higher mass.

For the charge flip probability, we take the current ATLAS performance in Ref. [54], which
parameterizes the flip probability P as the product of functions of ⌘ and PT : P = f(⌘)⇥ �(PT ).
Also we assume that �(PT ) for PT > 400 GeV keeps the same value as that in the bin (200,400)
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Figure 4: The signal efficiencies for the benchmark point: mN2 = 2 TeV, mN3 = 2.5 TeV.
The left plot shows the signal efficiencies for each channel with different mass of WR and N1.
The right plot shows the signal efficiencies for different relative strengths r of the two channels
(defined in Eq. 38), with MWR = 6 TeV.
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Figure 5: The distribution of the reconstructed transverse mass of WR at a 100 TeV pp-collider,
with benchmark point mWN = 300 GeV, mN2 = 2 TeV, mN3 = 2.5 TeV. Different colors
represents different masses of WR.
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Figure 3: The distribution of the transverse mass of the subleading positron and missing ET
at 100 TeV pp-collider with benchmark point MWR = 6 TeV, mN2 = 2 TeV, mN3 = 2.5 TeV.
Different colors represents different masses of mN1 , the solid and dashed curves represent the
events coming from the left and right diagram in Fig. 1 respectively.

mass can effectively discriminate the two diagrams in Fig. 1 if the mass of the N1 is sufficiently
large. As noted earlier, this discrimination can be achieved because the positron from the heavy
neutrino decay comes mostly from an on-shell W boson decay in the process in Eq. (37). The
signal efficiencies are different for the two processes in Fig. 1. In Fig. 4 we show the signal ef-
ficiency for each channel individually as well as the averaged efficiencies with different relative
strength of the two channels characterized by the parameter r defined below:

r ⌘
Br(N1 ! e+(W�

! µ�⌫̄µ))

Br(N1 ! µ�(W+ ! e+⌫e))
. (38)

As one can see from the left plot in Fig. 4, the efficiency of the channel shown in Eq. (37)
decreases as the mass of the N1 increases. This is mainly due to the cut mT (e

+
sub

/ET ) < 150 GeV
shown in Table 1, which helps to discriminate between the two channels shown in Eqs. (36) and
(37).

The last selection in Tab. 1 is a cut on the transverse mass of the e+e+µ� /ET system, since
for an on-shell WR boson, the transverse mass distribution is peaked at MWR (see Fig. 5),
where the SM backgrounds give a negligible contribution. The rejection of the backgrounds
was effectively achieved by using the cut mT (e+e+µ� /ET ) > MWR/2 shown in Table 1. In
this way, most of the signal events are kept while a significant portion of the backgrounds is
rejected. Furthermore, this cut also guarantees that the SM backgrounds become even more
suppressed when searching for a WR boson with higher mass.

For the charge flip probability, we take the current ATLAS performance in Ref. [54], which
parameterizes the flip probability P as the product of functions of ⌘ and PT : P = f(⌘)⇥ �(PT ).
Also we assume that �(PT ) for PT > 400 GeV keeps the same value as that in the bin (200,400)
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