Probing the See Saw Mechanism at Future Hadron Colliders

M.J. Ramsey-Musolf

U Mass Amherst

Amherst Center for Fundamental Interactions
Physics at the interface: Energy, Intensity, and Cosmic frontiers
University of Massachusetts Amherst
http://www.physics.umass.edu/acfi/
My pronouns: he/him/his
1812.01630: J.C. Helo, H. Li, N. Neill, MJRM, J.C. Vasquez
1810.09450: Y. Du, A. Dunbrack, MJRM, J.-H. Yu 1806.08499: B. Dev, MJRM, Y. Zhang

IAS Future Collider Workshop
January 2019

Goals For This Talk

- Illustrate how studies of the tri-lepton channel at the HL/HE-LHC \& a 100 TeV pp collider may help distinguish between mLRSM and non-minimal LRSM/minimal types I or II see saw mechanisms
- Illustrate reach of a 100 TeV collider for discovery and characterization of type II see saw scalar sector
- Encourage future work

Outline

I. ContextII. Type I+II See Saw \& LRSMIII. Tri-lepton Channel at pp Colliders
IV. Probing the Scalar PotentialV. Outlook

I. Context

Neutrino Mass Low-Energy EFT

$$
\mathcal{L}_{\text {mass }}=y \bar{L} \tilde{H} \nu_{R}+\text { h.c. } \quad \mathcal{L}_{\text {mass }}=\frac{y}{\Lambda} \bar{L}^{c} H H^{T} L+\text { h.c. }
$$

Dirac
Majorana

Neutrino Mass Low-Energy EFT

$$
\mathcal{L}_{\text {mass }}=y \bar{L} \tilde{H} \nu_{R}+\text { h.c. } \quad \mathcal{L}_{\text {mass }}=\frac{y}{\Lambda} \bar{L}^{c} H H^{T} L+\text { h.c. }
$$

Dirac
Majorana

Abstract

What is the mass scale Λ associated with m_{v} generation?

Neutrino Mass Low-Energy EFT

$$
\mathcal{L}_{\text {mass }}=y \bar{L} \tilde{H} \nu_{R}+\text { h.c. } \quad \mathcal{L}_{\text {mass }}=\frac{y}{\Lambda} \bar{L}^{c} H H^{T} L+\text { h.c. } .
$$

Dirac
Majorana

What is the mass scale Λ associated with m_{v} generation?

Neutrino Mass Low-Energy EFT

$$
\mathcal{L}_{\text {mass }}=y \bar{L} \tilde{H} \nu_{R}+\text { h.c. } \quad \mathcal{L}_{\text {mass }}=\frac{y}{\Lambda} \bar{L}^{c} H H^{T} L+\text { h.c. }
$$

Dirac
Majorana

What is the mass scale Λ associated with m_{v} generation?

What are the corresponding dynamics?

Neutrino Mass Models

- Type I see-saw
- Type II see-saw
- Type III see-saw
- Inverse see-saw
- Radiative
" $v S M ", ~ " v M S S M "$, LRESM

GUTS
LRSM
MSSM

+ combinations \& many other examples

Type I See-Saw

$$
\mathcal{L}_{\text {mass }}=y \bar{L} \tilde{H} \nu_{R}+\text { h.c. } \quad \mathcal{L}_{\text {mass }}=\frac{y}{\Lambda} \bar{L}^{c} H H^{T} L+\text { h.c. }
$$

Majorana

Type I: $N_{R} S U(2)_{L}$ singlet
Type III: $N_{R} S U(2)_{L}$ triplet

Type I See-Saw

$$
\mathcal{L}_{\text {mass }}=y \bar{L} \tilde{H} \nu_{R}+\text { h.c. } \quad \mathcal{L}_{\text {mass }}=\frac{y}{\Lambda} \bar{L}^{c} H H^{T} L+\text { h.c. }
$$

Majorana

Type II: $\Delta_{L} S U(2)_{L}$ triplet

Type I: $N_{R} S U(2)_{L}$ singlet Type III: $N_{R} S U(2)_{L}$ triplet

Type II See-Saw

$$
\mathcal{L}_{\text {mass }}=y \bar{L} \tilde{H} \nu_{R}+\text { h.c. } \quad \mathcal{L}_{\text {mass }}=\frac{y}{\Lambda} \bar{L}^{c} H H^{T} L+\text { h.c. }
$$

Majorana

Introduce "Complex Triplet": $\Delta_{L} \sim(1,3,2)$

$$
\begin{gathered}
\Delta_{L}=\left(\begin{array}{cc}
\Delta^{+} \sqrt{2} & \Delta^{++} \\
\Delta^{0} & -\Delta^{+} \sqrt{2}
\end{array}\right) \\
\mathcal{L}=\frac{g}{2} h_{i j}\left[\bar{L}^{C_{i}} \varepsilon \Delta_{L} L^{j}\right]+\text { h.c. }
\end{gathered}
$$

$$
\frac{y}{\Lambda} \sim g h\left(\frac{\mu}{m_{\Delta}}\right) \frac{1}{m_{\Delta}}
$$

See Saw Scenarios

Model Class	Minimal	LRSM	ΔV
Type I	\checkmark	\checkmark	$*$
Type II	\checkmark	\checkmark	\checkmark
Type III	\checkmark	\star	$*$
Inverse	\checkmark	\checkmark	$*$

See Saw Scenarios

Model Class	Minimal	LRSM	ΔV
Type I	\checkmark	$\boxed{ }$	$*$
Type II	\checkmark	\checkmark	\searrow
Type III	\checkmark	\star	$*$
Inverse	\checkmark	\checkmark	$*$

This Talk: How can we probe with LHC \& future pp colliders

Comments

- Many other earlier works on see saw collider pheno (e.g. Keung \& Senjanovic '83, Perez et al '08, Nemevsek et al '12, Han et al '13, Izaguirre \& Shuve ' $15, \cdots$) Apologies to others not cited here!
- Following assumes see saw scale at the 10's of TeV or below

II. Types I + II See Saw \& LRSM

See Saw Scenarios

ModeI Class	Minimal		LRSM	ΔV
Type I	\checkmark	$\boxed{ }$	$*$	
Type II	\nearrow		\checkmark	\checkmark
Type III	\checkmark	$*$	$*$	
Inverse	\checkmark	\checkmark	$*$	

How to distinguish minimal LRSM from nonminimal LRSM or other minimal scenarios

Minimal Left-Right Symmetric Model

Two sources of m_{v} :

$$
\begin{gathered}
\mathcal{L}=\frac{g}{2} h_{i j}\left[\bar{L}^{C_{i}} \varepsilon \Delta_{L} L^{j}\right]+(L \leftrightarrow R)+\text { h.c. + Yukawa } \\
\mathcal{L}_{\text {mass }}=\left(\begin{array}{ll}
\bar{\nu}_{L} & \bar{N}_{R}^{C}
\end{array}\right)\left(\begin{array}{cc}
0 & m_{D} \\
m_{D} & M_{N}
\end{array}\right)\binom{\nu_{L}}{N_{R}}+m_{L} \bar{\nu}_{L}^{C} \nu_{L}
\end{gathered}
$$

Minimal Left-Right Symmetric Model

Two sources of m_{v} :

$$
\mathcal{L}=\frac{g}{2} h_{i j}\left[\bar{L}^{C_{i}} \varepsilon \Delta_{L} L^{j}\right]+(L \leftrightarrow R)+\text { h.c. + Yukawa }
$$

Type I see-saw
Type II see-saw

$$
m_{N} \sim g h_{R}\left\langle\Delta_{R}^{0}\right\rangle
$$

$m_{L} \sim g h_{L}\left\langle\Delta_{L}^{0}\right\rangle$

Non-Minimal Left-Right Symmetric Model

LRSM inverse see saw:
Add gauge singlet neutral leptons
w/ Majorana mass μ

$$
\begin{aligned}
& \mathcal{M}=\left(\begin{array}{ccc}
0 & M_{D}^{T} & 0 \\
M_{D} & 0 & M_{N} \\
0 & M_{N}^{T} & \mu
\end{array}\right) \\
& M_{\nu} \simeq M_{D}^{T} \frac{1}{M_{N}^{T}} \mu \frac{1}{M_{N}} M_{D}
\end{aligned}
$$

Heavy-Light Neutrino Mixing

Mass matrix diagonalization

$$
\begin{gathered}
\binom{\nu^{\prime}}{N^{\prime c}}=\left(\begin{array}{cc}
1 & \Theta \\
-\Theta^{T} & 1
\end{array}\right)\binom{\nu}{N^{c}} \\
\Theta \simeq M_{D}^{*} M_{N}^{-1}
\end{gathered}
$$

Heavy-Light Neutrino Mixing

Mass matrix diagonalization

$$
\binom{\nu^{\prime}}{N^{\prime c}}=\left(\begin{array}{cc}
1 & \Theta \\
-\Theta^{T} & 1
\end{array}\right)\binom{\nu}{N^{c}}
$$

$$
\Theta \simeq M_{D}^{*} M_{N}^{-1}
$$

Colliders:
Probe Θ for M_{N} at or below O(few) TeV

Models:

- Minimal LRSM: predict Θ
- Minimal type I or nonminimal LRSM: Θ arbitrary

Heavy-Light Neutrino Mixing

Minimal Model

$$
M_{D}=V_{L}^{*} \hat{M}_{N} \sqrt{\frac{v_{L}}{v_{R}}-\frac{\hat{M}_{\nu}}{\hat{M}_{N}}} V_{L}^{\dagger}
$$

Non-Minimal Model

$$
V_{R}^{\dagger} M_{D}=\hat{M}_{N} U_{R}^{\dagger} \frac{1}{\sqrt{\hat{\mu}}} \mathcal{R} \sqrt{m_{\nu}} V_{L}^{\dagger}
$$

Heavy-Light Neutrino Mixing

Minimal Model

Non-Minimal Model

Heavy-Light Neutrino Mixing

Minimal Model

Non-Minimal Model
Arbitrary (Casas-Ibarra)

III. Tri-Lepton Channel at pp Colliders

1812.01630: J.C. Helo, H. Li, N. Neill, MJRM, J.C. Vasquez

Tri-Lepton Channel

- Relatively clean
- Previous work min type I
- Study prompt decay region
- Analysis: back up slides

Tri-Lepton Channel

- Relatively clean
- Previous work min type I
- Study prompt decay region
- Analysis: back up slides

Dominant: $N_{1} \rightarrow W_{R}{ }^{*} l \rightarrow j j \mid$

$$
\begin{aligned}
& \Gamma\left(N \rightarrow l^{ \pm} l^{\prime \mp} \nu\right)=\left(\left|\left(\Theta_{L}\right)_{l N}\right|^{2}+\left|\left(\Theta_{L}\right)_{l^{\prime} N}\right|^{2}\right) \\
& \quad x \frac{G_{F}^{2}}{96 \pi^{4} m_{N}} \int_{0}^{m_{N}^{2}} d x \frac{\pi\left(m_{N}^{2}-x\right)\left(m_{N}^{4}+x m_{N}^{2}-2 x^{2}\right)}{m_{N}^{2}\left(1-\frac{x}{M_{W}^{2}}\right)^{2}}
\end{aligned}
$$

$m L R S M N_{1} B R$

Sensitivities

LHC $3 a b^{-1}$

Sensitivities

Sensitivities

- Observation of the tri-lepton channel at the HL/HE-LHC \rightarrow non-minimal model or minimal type I
- Observing the tri-lepton channel in the mLRSM \rightarrow 100 TeV pp collider needed

Interpreting a Signal

100 TeV pp

Probing $\mathrm{O}(\mathrm{MeV})$ Dirac masses

IV. Probing the Scalar Potential

1810.09450: Y. Du, A. Dunbrack, MJRM, J.-H. Yu

- If tri-lepton signal seen at HL/HE-LHC how distinguish between minimal type I, minimal type II, or non-minimal LRSM?
- If tri-lepton signal first seen at $100 \mathrm{TeV} p p$ collider, how confirm it is in context of $L R$ symmetry

See Saw Scenarios

Model Class	Minimal	LRSM	ΔV
Type I	\checkmark	\checkmark	\star
Type II	\checkmark	\checkmark	\checkmark
Type III	\nearrow	\star	\star
Inverse	\nearrow	\nearrow	\star

- Follow on to Perez et al '08
- No assumption of $L R$ symmetry

Minimal Type II Potential

$$
\begin{aligned}
V(\Phi, \Delta)= & -m^{2} \Phi^{\dagger} \Phi+M^{2} \operatorname{Tr}\left(\Delta^{\dagger} \Delta\right)+\left[\mu \Phi^{\mathrm{T}} \mathrm{i} \tau_{2} \Delta^{\dagger} \Phi+\text { h.c. }\right]+\lambda_{1}\left(\Phi^{\dagger} \Phi\right)^{2} \\
& +\lambda_{2}\left[\operatorname{Tr}\left(\Delta^{\dagger} \Delta\right)\right]^{2}+\lambda_{3} \operatorname{Tr}\left[\Delta^{\dagger} \Delta \Delta^{\dagger} \Delta\right]+\lambda_{4}\left(\Phi^{\dagger} \Phi\right) \operatorname{Tr}\left(\Delta^{\dagger} \Delta\right)+\lambda_{5} \Phi^{\dagger} \Delta \Delta^{\dagger} \Phi
\end{aligned}
$$

Minimal Type II Potential

$$
\begin{aligned}
V(\Phi, \Delta)= & -m^{2} \Phi^{\dagger} \Phi+M^{2} \operatorname{Tr}\left(\Delta^{\dagger} \Delta\right)+\left[\mu \Phi^{\mathrm{T}} \mathrm{i} \tau_{2} \Delta^{\dagger} \Phi+\text { h.c. }\right]+\lambda_{1}\left(\Phi^{\dagger} \Phi\right)^{2} \\
& +\lambda_{2}\left[\operatorname{Tr}\left(\Delta^{\dagger} \Delta\right)\right]^{2}+\lambda_{3} \operatorname{Tr}\left[\Delta^{\dagger} \Delta \Delta^{\dagger} \Delta\right]+\lambda_{4}\left(\Phi^{\dagger} \Phi\right) \operatorname{Tr}\left(\Delta^{\dagger} \Delta\right)+\lambda_{5} \Phi^{\dagger} \Delta \Delta^{\dagger} \Phi
\end{aligned}
$$

- How to discover Δ scalars ?
- How to determine potential parameters ?

Minimal Type II Potential

$$
\begin{aligned}
V(\Phi, \Delta)= & -m^{2} \Phi^{\dagger} \Phi+M^{2} \operatorname{Tr}\left(\Delta^{\dagger} \Delta\right)+\left[\mu \Phi^{\mathrm{T}} \mathrm{i} \tau_{2} \Delta^{\dagger} \Phi+\text { h.c. }\right]+\lambda_{1}\left(\Phi^{\dagger} \Phi\right)^{2} \\
& +\lambda_{2}\left[\operatorname{Tr}\left(\Delta^{\dagger} \Delta\right)\right]^{2}+\lambda_{3} \operatorname{Tr}\left[\Delta^{\dagger} \Delta \Delta^{\dagger} \Delta\right]+\lambda_{4}\left(\Phi^{\dagger} \Phi\right) \operatorname{Tr}\left(\Delta^{\dagger} \Delta\right)+\lambda_{5} \Phi^{\dagger} \Delta \Delta^{\dagger} \Phi
\end{aligned}
$$

- How to discover Δ scalars?
- How to determine potential parameters ?

Parameter	Significance	Probe
μ	Type II m_{v}	Neutrino mass
λ_{5}	Δ mass spectrum	Δ mass splittings
λ_{4}	Higgs portal	H^{+}decays
$\lambda_{2,3}$	Δ self interaction	Challenging

Discovery

Production	Decay mode + final state	Regime
$\mathrm{H}^{++} \mathrm{H}^{-}$	$I^{+} I^{+} I^{-}$	Small v_{Δ}
$\mathrm{H}^{++} \mathrm{H}^{++}$	$W^{+} W^{+} W-W^{-} \rightarrow I^{+} I^{+} I^{-}+M E T$	Large v_{Δ}
$\mathrm{H}^{++} \mathrm{H}^{-}$	$I^{+}+h W^{-} \rightarrow I^{++}$bb $I^{-}+\mathrm{MET}$	Intermediate v_{Δ}
$H^{++} H^{-}$	$W^{+} W^{+} h W^{-} \rightarrow I^{+} I^{+} b b I^{-}+M E T$	Intermediate v_{Δ}

Discovery

Discovery

This study

Discovery

Discovery

Probing the Scalar Potential: λ_{5}

$$
m_{H^{++}}^{2}-m_{H^{+}}^{2} \simeq-\frac{\lambda_{5}}{4} v_{H}^{2}
$$

Probing the Scalar Potential

$$
\begin{aligned}
& \Phi=\left[\begin{array}{c}
\varphi^{+} \\
\frac{1}{\sqrt{2}}\left(\varphi+v_{\Phi}+i \chi\right)
\end{array}\right] \quad \Delta=\left[\begin{array}{cc}
\frac{\Delta^{+}}{\sqrt{2}} & H^{++} \\
\frac{1}{\sqrt{2}}\left(\delta+v_{\Delta}+i \eta\right) & -\frac{\Delta^{+}}{\sqrt{2}}
\end{array}\right] \\
& \binom{\varphi}{\delta}=\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)\binom{h}{H}
\end{aligned}
$$

$$
\tan 2 \alpha \approx \frac{v_{\Delta}}{v_{\Phi}} \cdot \frac{2 v_{\Phi}^{2} \lambda_{45}-4 m_{\Delta}^{2}}{2 \lambda_{1} v_{\Phi}^{2}-m_{\Delta}^{2}} \approx \frac{v_{\Delta}}{v_{\Phi}} \cdot \frac{2 v_{\Phi}^{2} \lambda_{45}-4 m_{\Delta}^{2}}{m_{h}^{2}-m_{\Delta}^{2}}
$$

Probing the Scalar Potential

$$
\begin{aligned}
& \Phi=\left[\begin{array}{c}
\varphi^{+} \\
\frac{1}{\sqrt{2}}\left(\varphi+v_{\Phi}+i \chi\right)
\end{array}\right] \quad \Delta=\left[\begin{array}{cc}
\frac{\Delta^{+}}{\sqrt{2}} & H^{++} \\
\frac{1}{\sqrt{2}}\left(\delta+v_{\Delta}+i \eta\right) & -\frac{\Delta^{+}}{\sqrt{2}}
\end{array}\right] \\
& \binom{\varphi}{\delta}=\left(\begin{array}{cc}
\cos \alpha-\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)\binom{h}{H}
\end{aligned}
$$

Triplet mass scale

$$
\tan 2 \alpha \approx \frac{v_{\Delta}}{v_{\Phi}} \cdot \frac{2 v_{\Phi}^{2} \lambda_{45}-4 m_{\Delta}^{2}}{2 \lambda_{1} v_{\Phi}^{2}-m_{\Delta}^{2}} \approx \frac{v_{\Delta}}{v_{\Phi}} \cdot \frac{2 v_{\Phi}^{D_{\Phi}} \lambda_{45}-4 m_{\Delta}^{2}}{m_{h}^{2}-m_{\Delta}^{2}}
$$

Probing the Scalar Potential

Vertex	Coupling
$h A Z$	$-\frac{g}{2 \cos \theta_{W}}\left(\cos \alpha \sin \beta_{0}-2 \sin \alpha \cos \beta_{0}\right)$
$H Z Z$	$\frac{2 i e m_{Z}}{\sin 2 \theta_{W}}\left(2 \sin \beta_{0} \cos \alpha-\cos \beta_{0} \sin \alpha\right)$
$H W^{+} W^{-}$	$i g m_{Z} \cos \theta_{W}\left(\sin \beta_{0} \cos \alpha-\cos \beta_{0} \sin \alpha\right)$
$h H^{-} W^{+}$	$\frac{i g}{2}\left(\sin \beta_{ \pm} \cos \alpha-\sqrt{2} \cos \beta_{ \pm} \sin \alpha\right)$

Probing the Scalar Potential

Vertex	Coupling
$h A Z$	$-\frac{g}{2 \cos \theta_{W}}\left(\cos \alpha \sin \beta_{0}-2 \sin \alpha \cos \beta_{0}\right)$
$H Z Z$	$\frac{2 i e m_{Z}}{\sin 2 \theta_{W}}\left(2 \sin \beta_{0} \cos \alpha-\cos \beta_{0} \sin \alpha\right)$
$H W^{+} W^{-}$	$i g m_{Z} \cos \theta_{W}\left(\sin \beta_{0} \cos \alpha-\cos \beta_{0} \sin \alpha\right)$
$h H^{-} W^{+}$	$\frac{i g}{2}\left(\sin \beta_{ \pm} \cos \alpha-\sqrt{2} \cos \beta_{ \pm} \sin \alpha\right)$

Probing the Scalar Potential

Production	Decay mode + final state	Regime
$H^{++} H^{-}$	$I^{+} I^{+} h W^{-} \rightarrow I^{+} I^{+} b b I^{-}+M E T$	Intermediate v_{Δ}
$H^{++} H^{-}$	$W^{+} W^{+} h W^{-} \rightarrow I^{+} I^{+}$bb $I^{-}+M E T$	Intermediate v_{Δ}

Vertex	Coupling
$h A Z$	$-\frac{g}{2 \cos \theta_{W}}\left(\cos \alpha \sin \beta_{0}-2 \sin \alpha \cos \beta_{0}\right)$
$H Z Z$	$\frac{2 i e m_{Z}}{\sin 2 \theta_{W}}\left(2 \sin \beta_{0} \cos \alpha-\cos \beta_{0} \sin \alpha\right)$
$H W^{+} W^{-}$	$i g m_{Z} \cos \theta_{W}\left(\sin \beta_{0} \cos \alpha-\cos \beta_{0} \sin \alpha\right)$
$h H^{-} W^{+}$	$\frac{i g}{2}\left(\sin \beta_{ \pm} \cos \alpha-\sqrt{2} \cos \beta_{ \pm} \sin \alpha\right)$

Probing the Scalar Potential

Probing the Scalar Potential

V. Outlook

- Uncovering the origin of m_{v} is a key open problem in particle physics and one for which a variety of experimental probes are needed
- For m_{v} dynamics at the TeV scale or below, hadron colliders could provide unique tests of the see saw mechanism
- The tri-lepton channel can be used to probe the heavylight neutrino mixing angle, and a comparison of HL/HELHC and 100 TeV pp collider searches could distinguish the minimal LRSM scenario from other see saw mechanisms
- A 100 TeV pp collider could significantly extend the discovery reach for scalars associated with the type II scenario and probe a variety of scalar sector couplings
- There exist many opportunities for additional studies हो others are encouraged to get involved!

Back Up Slides

Heavy-Light Neutrino Mixing

Minimal Model

$$
\begin{aligned}
\Theta & =\sqrt{\epsilon-M_{N}^{-1} M_{\nu}}=M_{D}^{*} M_{N}^{-1} \quad \Theta_{L}=\Theta V_{R}^{*}, \quad \Theta_{R}=\Theta V_{L}^{*} . \\
M_{D} & =V_{L}^{*} \hat{M}_{N} \sqrt{\frac{v_{L}}{v_{R}}-\frac{\hat{M}_{\nu}}{\hat{M}_{N}}} V_{L}^{\dagger}
\end{aligned}
$$

Non-Minimal Model

$$
\Theta_{L}=\frac{1}{\sqrt{2}} M_{D}^{\dagger} V_{R} \hat{M}_{N}^{-1} \quad V_{R}^{\dagger} M_{D}=\hat{M}_{N} U_{R}^{\dagger} \frac{1}{\sqrt{\hat{\mu}}} \mathcal{R} \sqrt{m_{\nu}} V_{L}^{\dagger}
$$

Analysis: Backgrounds

ttZ, ttW, tt (j), WZ (j), 3W, Z/ү (j)

Cuts

Cut description	
$e^{+} e^{+} \mu^{-}$, no b jets and no additional leptons	signal selection
$p_{T, e^{+}}^{l e a d}>200 \mathrm{GeV}, p_{T, e^{+}}^{\text {sub }}>100 \mathrm{GeV}, p_{T, \mu^{-}}^{\text {lead }}>100 \mathrm{GeV}$	reduce all backgrounds
$\begin{gathered} \mathbb{F}_{T}>100 \mathrm{GeV} \\ \left.\left\|m_{\text {inv }}\left(e^{+} e^{+}\right)-91.2\right\|\right)>10 \mathrm{GeV} \end{gathered}$	reduce mostly $t \bar{t}(j)$ and $Z / \gamma(j)$ reduce mostly $W Z(j)$
$m_{T}\left(e_{s u b}^{+} E_{T}\right)<150 \mathrm{GeV}$	select channel shown in Fig. 1 (right)
$m_{T}\left(e^{+} e^{+} \mu^{-} \mathbb{E}_{T}\right)>M_{W_{R}} / 2$	reduce all backgrounds

Analysis: Cuts

100 TeV pp

Cut description	
$e^{+} e^{+} \mu^{-}$, no b jets and no additional leptons	signal selection
$p_{T, e^{+}}^{\text {lead }}>200 \mathrm{GeV}, p_{T, e^{+}}^{\text {sub }}>100 \mathrm{GeV}, p_{T, \mu^{-}}^{l e a d}>100 \mathrm{GeV}$	reduce all backgrounds
$\mathbb{E}_{T}>100 \mathrm{GeV}$	reduce mostly $t \bar{t}(j)$ and $Z / \gamma(j)$
$\left.\left\|m_{\text {inv }}\left(e^{+} e^{+}\right)-91.2\right\|\right)>10 \mathrm{GeV}$	reduce mostly $W Z(j)$
$m_{T}\left(e_{\text {sub }}^{+} \mathbb{E}_{T}\right)<150 \mathrm{GeV}$	select channel shown in Fig. 1 (right)
$m_{T}\left(e^{+} e^{+} \mu^{-} \mathbb{E}_{T}\right)>M_{W_{R}} / 2$	reduce all backgrounds

Analysis: Cuts

100 TeV pp

Cut description	
$e^{+} e^{+} \mu^{-}$, no b jets and no additional leptons	signal selection
$p_{T, e^{+}}^{\text {lead }}>200 \mathrm{GeV}, p_{T, e^{+}}^{\text {sub }}>100 \mathrm{GeV}, p_{T, \mu^{-}}^{\text {lead }}>100 \mathrm{GeV}$	reduce all backgrounds
$\mathbb{E}_{T}>100 \mathrm{GeV}$	reduce mostly $t \bar{t}(j)$ and $Z / \gamma(j)$
$\left.\left\|m_{\text {inv }}\left(e^{+} e^{+}\right)-91.2\right\|\right)>10 \mathrm{GeV}$	reduce mostly $W Z(j)$
$m_{T}\left(e_{\text {sub }}^{+} \mathbb{E}_{T}\right)<150 \mathrm{GeV}$	select channel shown in Fig. 1 (right)
$m_{T}\left(e^{+} e^{++} \mu^{-} \mathbb{E}_{T}\right)>M_{W_{R}} / 2$	reduce all backgrounds

Analysis: Cuts

	Backgrounds						Signal	
$\sqrt{s}=13 \mathrm{TeV}$	$t \bar{t} Z$	$t \bar{t} W$	$t \bar{t}(j)$	$W Z(j)$	$3 W$	$Z / \gamma(j)$	$m_{N}(100 \mathrm{GeV}) m_{N}(500 \mathrm{GeV})$	
$e^{+} e^{+} \mu^{-}(\mathrm{b}-$-veto $)$	11.8	74.9	23058	24.8	6.71	901	1293	371
P_{T} cuts	0.325	3.75	216	0.215	2.33	5.31	825	253
$\mathbb{E}_{T} \mathrm{GeV}$	0.158	1.85	117	0.0761	1.06	0.0911	646	188
$m_{\text {inv }}\left(e^{+} e^{+}\right)$	0.155	1.82	113	0.0761	1.05	0	646	188
$m_{T}\left(e_{\text {sub }}^{+} E_{T}\right)$	0.0582	0.743	48.4	0.0277	0.491	0	622	176
$m_{T}\left(e^{+} e^{+} \mu^{-} \mathbb{E}_{T}\right)$	0	7.82×10^{-3}	0	0	0.0169	0	597	158

Analysis: Efficiencies

$$
r \equiv \frac{\operatorname{Br}\left(N_{1} \rightarrow e^{+}\left(W^{-} \rightarrow \mu^{-} \overline{\nu_{\mu}}\right)\right)}{\operatorname{Br}\left(N_{1} \rightarrow \mu^{-}\left(W^{+} \rightarrow e^{+} \nu_{e}\right)\right)}
$$

$M_{\mathrm{kg}}=2 \mathrm{TeV}, \mathrm{M}_{\mathrm{N} 3}=2.5 \mathrm{TeV}, \mathrm{FCC}$

$M_{v e}=2 \mathrm{TeV}, M_{v 3}=2.5 \mathrm{TeV}, \mathrm{FCC}$

